Мёртвая зыбь
Шрифт:
Этюд заслуживает самой высокой похвалы. Изящный финал, которому предшествует интересная и строгая игра.
[13] Примечание для шахматистов.
У черных перевес: ферзь за ладью с пешкой, но ход белых:
1. e7.
Черным надо перехватить пешку e7:
1… Кa3+
Не спасает 1… Крc3+, как показывает анализ, вдет к сложным, проигрышным для черных вариантам.
2. Крb6!
Очень тонкий ход. Все остальные хуже.
2… Кc4+.
Не
3. Крc5 Фa4 4. Л: b4!!
Становясь ладьей в засаду и отдавая ради этого свою "пешку-надежду"! Но взведя курок своеобразной шахматной "адской машины"!
4… Фa7+ 5. Кр: c4 Ф: e7.
Пешка уничтожена. Казалось, страхи позади. Ладья заслонена от короля тремя фигурами и выглядит безобидной. Но в смертельном ударе развертывается скрытая пружина сверкающей комбинации:
6. Кg6+ f: g6 7. Сf6+ Ф: f6 8. Крd5+!
Король шахует, открыв ладью, притаившись за ее спиной!
8… Крg5 9. h4+ Крf5 10. g4+
Вот они, пешки, помогающие достигнуть цели, как сахалинские рыбы, идя на нерест, подставившие под колеса при переправе свои спины!
h: g4 11. Лf4+ С: f4 12. e4+ мат!
"Ошеломляющий финал! Все фигуры в ходе борьбы на своих местах. Ни одной лишней, не участвующей в мате! И "Взрыв", как в тунгусской тайге!" — Написал в заключение судья Корт, отменив свое предыдущее решение.
[14] Илизаров показывал:
— 1. Крc7 — Хуже нет — ждать, да догонять. А ждать нельзя. Так у нас кабардинцы говорят. — 1… b4 2. Крd6 b3. — Ее и не догнать, кабы не слон. — 3. Сd1 b2 4. Сc2. — Теперь черные воронка h вскачь пускают с белым королем взапуски. Хоть в тотализатор играй. — 4… h5 5. Крe5, грозя взять коня и двинуть пешку g6 в ферзи, но — 5… Кg4+ 6. Крf4! Кf6, - спасая пешку h5, после неизбежного 7. Крg5. — Создалось прелестное положение позиционной ничьи.
[15] — Я нападал слоном на пешку 3.Сb1, считая, что черные непременно двинут пешку на b2, близоруко упуская из виду промежуточный шах — 3.Ке4+, сразу и защищая пешку и проводя ее в ферзи. Теперь пешка h при лишнем коне легко выигрывают. Авторский же путь, куда изящнее моей позиционной ничьи, — и он показал: —
1. Крc7 b4 2. Крd6 b3 и теперь вместо моего естественного хода 3.Сс1 с задержанием пешки делается, казалось бы, бессмысленный ход — 3. Крe5! — пропуская пешку b в ферзи, но затаив красивейшую угрозу: — 3… b2? 4. Кр: f6 b1=Ф 5. g7+ Крh7 6. Сe4+ Ф: e4 7. g8=Ф+ Кр: g8 — и белым излюбленный Куббелем чистый вакуумный пат.
— Избегая ничьи, — продолжал с воодушевлением мой ранний гость, — черные, защищая коня, теряют драгоценнейший темп — 3… Крg7– и пытаются делать ставку на пешку b, но теперь белые нападают на нее слоном. Промежуточного шаха на е4 нет! — 4. Сd1 b2 5. Сc2 Кg4+ 6. Крd4 — теперь король настигнет, как в известном этюде Рети, недогоняемую пешку, но черный
[16] Примечание автора для особо интересующихся.
Ферма мог сразу доказать свое неравенство:
Хn + Yn /= Zn; при n >2 (1)
Но он начал с доказательства нынешней теоремы покойного любителя математики из Мариуполя Геннадия Ивановича Крылова. Тот эмпирически нашел ее, но не успел доказать:
“Сумма двух возможных целых чисел, возведенных в одну и ту же степень, равна целому числу в степени на единицу большей”.
Хn + Yn = Z(n+1); (2)
Целое число >1 равно сумме двух целых чисел:
Z = A + B; при этом (3)
(2) можно представить как:
Z(n+1) = Zn. Z; (4)
Z(n+1)=(A + B). Zn = AZn+ ВZn ; (5)
Пусть аn = A; bn= В; в целых числах: (6)
Z(n+1)=(a. Z)n + (b. Z)n; (7)
Выражения в скобках — это и есть натуральные числа из (2) X и Y:
X = aZ; (8)
Y = bZ; (9)
Подставив (9) и (8) в (7) получим исходное выражение (3):
Xn+ Yn= Zn+1;что и требовалось доказать.
Ферма проверил теорему и на разность степеней:
Xn — Yn = Zn+1;?? (10)
Zn+1 = Zn. Z; (11)
Z = an — bn ; (12)
Zn+1 =(a Z)n — (bZ)n ; (13)
aZ = X; bZ = Y; (14)
Zn+1 = Xn — Yn ; (10)
Следовательно, теорема верна и для разности степеней и ее формулировка дополнена:
СУММА ИЛИ РАЗНОСТЬ ДВУХ ВОЗМОЖНЫХ ЦЕЛЫХ ЧИСЕЛ В СТЕПЕНИ n, РАВНА ЦЕЛОМУ ЧИСЛУ В СТЕПЕНИ n+1.
Ферма вывел более общую теорему НЕОБИНОМА:
“СУММА ДВУХ ВОЗМОЖНЫХ ЦЕЛЫХ ЧИСЕЛ В СТЕПЕНИ n, РАВНA ЦЕЛОМУ ЧИСЛУ В ЛЮБОЙ СТЕПЕНИ n+m, при n^32 и m>0.”
По аналогии с доказательством теоремы Крылова, он допустил, что вместо его НЕРАВЕСТВА (2) будет РАВЕНСТВО: