Чтение онлайн

на главную - закладки

Жанры

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии
Шрифт:

Наиболее важным результатом являются изменения в восприятии пространства человеческим разумом. Графические иллюстрации, конечно, играют вспомогательную роль и не являются строгими математическими аргументами, хотя они помогают наглядно пояснить эти понятия.

Как мы уже видели, гиперболическая геометрия является неевклидовой, когда пятый постулат о параллельных прямых заменен следующим: через точку Р вне прямой l можно провести по крайней мере две прямые, параллельные данной. Этот так называемый гиперболический постулат о параллельных прямых может быть проиллюстрирован двумя способами. Оба они эквивалентны и показаны на следующем рисунке:

Из

этой гипотезы вытекают различные понятия, лежащие в основе гиперболической геометрии. Мы начнем с основной теоремы.

Углы параллельности

Результат, связанный с углами параллельности, считается основной теоремой гиперболической геометрии. Начнем со следующего рисунка:

Через точку Р вне данной прямой l проходят по крайней мере две прямые, m и n, параллельные l, так что все прямые внутри области I пересекаются с прямой l, а прямые в области II не пересекаются с прямой l. Это означает, что существует бесконечное число прямых, проходящих через точку Р и не пересекающих прямую l. Две крайние параллельные l прямые, тип, разграничивают две области (I и II).

Таким образом, область I ограничена линиями тип, образующими угол (, который меньше двух прямых углов (180°), как видно на предыдущем рисунке.

Угол /2 называется углом параллельности. Обратите внимание, что является острым углом (меньшим, чем прямой угол). Это важный факт, так как в евклидовой геометрии такие углы всегда прямые.

На рисунке из точки Р на прямую l опущен перпендикуляр, а расстояние от точки Р до прямой l обозначено буквой d. Мы видим, что угол ОС зависит от длины d (напомним, что мы рассматриваем не плоскую поверхность), так что

1) при уменьшении d стремится к прямому углу (90°);

2) при увеличении d стремится к 0.

Этот результат можно наглядно представить с помощью резиновой ленты. Точка Р является концом растянутой резинки, расположенной перпендикулярно прямой l, так что точка Р может двигаться вверх-вниз, увеличивая и уменьшая длину резинки, вместе с которой будут двигаться прямые, проходящие через точку Р. Таким образом, мы увидим, как будет меняться угол параллельности.

При этом существует постоянная величина, которую мы обозначим k, зависящая от единицы измерения длины d и выражаемая следующим образом:

Предыдущий результат можно получить по-другому. Когда значение d увеличивается, правая часть уравнения будет стремиться

к 0, и поэтому значение tg (/2) также стремится к 0, что означает, что  практически 0.

Аналогично, когда d очень мало, значение tg (/2) — будет приближаться к 1, что означает, что

, то есть будет прямым углом, так как /2 = 90°.

В евклидовой геометрии этот угол не меняется при изменении расстояния. В гиперболической геометрии, как мы видим, угол всегда зависит от величины d.

Эквидистанты

В евклидовой геометрии расстояние между параллельными прямыми на всем их протяжении всегда одно и то же. Как и следовало ожидать, в мире гиперболической геометрии ситуация оказывается несколько иной.

Рассмотрим прямую l и параллельную ей прямую s. Выберем точку Р на s, как на следующем рисунке:

При перемещении точки Р вправо мы видим, что расстояние от Р до прямой l уменьшается. Выражаясь математическим языком, это расстояние стремится к нулю.

Мы также можем сказать, что прямые и s асимптотически сходятся справа.

Аналогично, если точка Р движется налево, мы видим, что расстояние от Р до прямой l увеличивается. В этом случае говорят, что прямые и расходятся. Поэтому, когда в гиперболической геометрии имеются прямые, расстояние между которыми остается постоянным, то такие прямые не могут быть параллельны. Иначе это противоречило бы пятому постулату гиперболической геометрии. Прямая, находящаяся на постоянном расстоянии от данной прямой, называется эквидистантой.

Пифагор, треугольники и длины

Теперь мы рассмотрим результаты, связанные с треугольниками, кругами и отношениями между площадью и длинами. Эти результаты включают теорему Пифагора, и мы увидим, как она работает в гиперболической геометрии на примере некоторых задач, знакомых нам со школы.

Треугольники

Формула для площади треугольника в евклидовой геометрии всегда одинакова для любого треугольника: s = (b·h/2) то есть площадь равна половине произведения основания треугольника на высоту. В основе этого выражения лежит тот факт, что сумма внутренних углов треугольника всегда равна 180°.

Но в гиперболической геометрии, как ни странно, площадь треугольника зависит от суммы его углов. Как мы уже говорили, в гиперболической геометрии сумма углов треугольника всегда меньше 180°. Следовательно, сумма углов в четырехугольнике также будет меньше 360°.

В евклидовой геометрии если три угла A, В и С одного треугольника и три угла А', В' и С' другого треугольника соответственно равны, то эти треугольники являются подобными. Это не означает, что их соответствующие стороны имеют одинаковую длину. В гиперболической геометрии у таких треугольников с соответственно равными углами будут равны и соответствующие стороны.

Поделиться:
Популярные книги

Возвышение Меркурия. Книга 13

Кронос Александр
13. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 13

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота

Идеальный мир для Лекаря 25

Сапфир Олег
25. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 25

Хроники Сиалы. Трилогия

Пехов Алексей Юрьевич
Хроники Сиалы
Фантастика:
фэнтези
9.03
рейтинг книги
Хроники Сиалы. Трилогия

Повелитель механического легиона. Том I

Лисицин Евгений
1. Повелитель механического легиона
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Повелитель механического легиона. Том I

Жена моего брата

Рам Янка
1. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Жена моего брата

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Real-Rpg. Еретик

Жгулёв Пётр Николаевич
2. Real-Rpg
Фантастика:
фэнтези
8.19
рейтинг книги
Real-Rpg. Еретик

Измена

Рей Полина
Любовные романы:
современные любовные романы
5.38
рейтинг книги
Измена

Кротовский, побойтесь бога

Парсиев Дмитрий
6. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кротовский, побойтесь бога

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Книга 5. Империя на марше

Тамбовский Сергей
5. Империя у края
Фантастика:
альтернативная история
5.00
рейтинг книги
Книга 5. Империя на марше

Как я строил магическую империю 4

Зубов Константин
4. Как я строил магическую империю
Фантастика:
боевая фантастика
постапокалипсис
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 4