Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии
Шрифт:
На самом деле результаты, о которых мы говорили, служат подтверждением того, что гиперболическая геометрия является обобщением евклидовой геометрии. Лобачевский особенно подчеркивал это свойство своей теории, назвав ее пангеометрией, то есть «универсальной геометрией».
Теорема Пифагора
Всегда полезно взглянуть на известные результаты через призму другой теории. Но именно в теореме Пифагора эффект новых геометрий наиболее заметен. В гиперболической геометрии теорема Пифагора играет столь же важную роль, как и в геометрии Евклида, и, как можно было ожидать, для небольших расстояний она ведет себя так же, как и другие гиперболические объекты. Другими словами, на небольших расстояниях она совпадает с евклидовой версией. Однако при увеличении расстояния ситуация меняется.
Рассмотрим
Для этого треугольника справедливо равенство
которое может быть переписано в терминах гиперболической геометрии как:
Раскладывая выражение
Отсюда видно, что в случае небольших сторон треугольника формула Пифагора остается в силе:
с2 = а2 + Ь2,
принимая традиционный вид, как в евклидовой геометрии.
* * *
ГИПЕРБОЛИЧЕСКИЕ ФУНКЦИИ
Гиперболические функции называются так потому, что по свойствам они напоминают классические тригонометрические функции. Они таким же образом связаны с гиперболой, как традиционные тригонометрические функции связаны с окружностью.
* * *
Все эти примеры говорят об общем результате, поэтому мы можем утверждать, что параллельные прямые на гиперболической плоскости в малых областях не отличаются от евклидовых параллельных прямых. С другой стороны, в этих вычислениях использовались гиперболические тригонометрические функции — особые аналоги традиционных функций синуса и косинуса. Они называются гиперболическим синусом и гиперболическим косинусом. Добро пожаловать в гиперболическую тригонометрию.
Работая над своими сложными математическими теориями, Бойяи и Лобачевский вывели тригонометрические выражения для гиперболической геометрии. Удивительным является тот факт, что, как и все остальное, они сделали это независимо друг от друга. Это свидетельствует об их гениальности, но также показывает, что результаты, которые они получили, действительно являются правильными.
Соотношения, выведенные Бойяи и Лобачевским, в малых областях могут быть сведены к формулам классической тригонометрии, но в других случаях они характеризуют новые, совершенно неисследованные миры.
Для переменной х гиперболический синус и гиперболический косинус определяются следующим образом:
Аналогично элементарной тригонометрии, гиперболический тангенс определяется следующей формулой:
th x = shx/chx
Здесь
В треугольнике со сторонами а, b и с и с углами А, В и С
справедливо следующее соотношение:
a/sin A = b/sin В = c/sin С
Аналогичное соотношение можно сформулировать в гиперболической тригонометрии:
sin A/sha = sin B/sh b = sin С/sh c
Чтобы проверить гиперболические равенства, нужно подставить вместо гиперболических функций их определения:
и затем, выполнив соответствующие расчеты, убедиться, что получится один и тот же ответ.
Используя определения гиперболических синуса и косинуса, можно вывести и другие тригонометрические тождества, аналогичные известным тождествам из евклидовой геометрии. Например, мы можем проверить, что
ch(x + у) = chx·chy + shx·shy
аналогично традиционному выражению
cos(x + у) = cosx·cosy + sinx·siny
* * *
ОСНОВНОЕ ТОЖДЕСТВО ГИПЕРБОЛИЧЕСКОЙ ТРИГОНОМЕТРИИ
В евклидовой тригонометрии есть важное соотношение, называемое основным тригонометрическим тождеством, которое утверждает, что sin2x + cos2x = 1. Аналогом в гиперболической тригонометрии является следующее тождество:
ВОПРОС ТЕРМИНОЛОГИИ
В евклидовой терминологии синус и косинус называются круговыми функциями, поскольку они получаются из свойств круга. Рассмотрим окружность радиуса 1 с центром в начале системы координат. Уравнение этой окружности записывается как х2 + у2 = 1. В этом простом уравнении мы можем сделать замену переменной, выразив переменные х и у через параметр t следующим образом: х = cost и у = sint. Здесь х и у удовлетворяют соотношению х2 + у2 = 1. Такое уравнение называется параметрическим уравнением окружности.
Если вместо круга мы возьмем гиперболу, график функции х2 — у2 = 1, то х = ch t и у = sh t удовлетворяют соотношению х2 — у2 = 1. Это уравнение называется «уравнением гиперболы».
Эти графики нам уже знакомы. Гипербола напоминает нам псевдосферу.