Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии
Шрифт:
Каждая из сторон представляет собой дугу большого круга. Используя формулу для длины дуги, получим:
(·R) = (/2)·6350 = 9 974,2625 км
Этот же результат можно получить и другим способом: разделить длину большого круга на четыре (напомним, что длина окружности составляет 2R):
(2·6350)/4 = 9974,2625 км.
Ясно, что ту же процедуру можно повторить для Луны, радиус которой равен 1736 км.
* * *
ДЛИНА ДУГИ КРУГОВОГО СЕКТОРА
Для части окружности с центром O и радиусом r, изображенной на рисунке, обозначим угол, измеряемый, как правило, в радианах, а с — дугу между точками А
Имея дело с длиной стороны сферического треугольника, мы обычно используем круговую меру угла, которую фактически нужно лишь умножить на радиус.
* * *
Вернемся к нашему общему вопросу. Геодезической линией называется кратчайшая линия, соединяющая две точки на поверхности и сама принадлежащая этой поверхности. На совершенно плоской, то есть евклидовой поверхности, геодезической линией является отрезок. Между двумя точками А и В на сферической поверхности из всех окружностей, проходящих через эти точки и расположенных на этой сфере, геодезической линией является большой круг. Другими словами, геодезическая линия получается путем пересечения сферы плоскостью АОВ. Таким образом, геодезическим отрезком между точками А и В является меньшая из дуг большого круга, проходящего через А и В. Обратите внимание, что случай с этим кругом — единственный, когда А и В не являются диаметрально противоположными точками.
В геометрии на сфере прямыми линиями являются дуги больших кругов. Таким образом, параллельные линии не существуют, так как большие круги всегда пересекаются в диаметрально противоположных точках. Для наглядности достаточно взглянуть на дольки очищенного апельсина.
* * *
ПОВЕРХНОСТЬ ЗЕМЛИ
Является ли единственным кратчайший путь между двумя европейскими столицами, например, между Лондоном и Парижем? Ответ на этот вопрос положителен: существует только одна геодезическая линия, соединяющая эти города. Аналогично, уникален ли маршрут между Северным и Южным полюсами? Здесь ответ отрицательный: существует бесконечное количество геодезических линий, соединяющих эти две точки, так как они диаметрально противоположны.
* * *
Мир сферических треугольников иллюстрирует много математических свойств эллиптической геометрии. Поэтому стоит его рассмотреть подробнее. Для начала рассмотрим на сфере радиуса R сферический треугольник с вершинами А, В, С и сторонами а, Ь, с.
Одним из результатов, о котором мы уже говорили, является тот факт, что сумма углов сферического треугольника больше 180°, или радиан, и меньше 360° = 2 радиан. То есть
< A + В + С < 2.
Таким образом, можно сказать, что сумма сторон сферического треугольника удовлетворяет неравенству:
a + b + c < 2··R.
Величина (А + В + С — 180°) называется сферическим избытком, так что площадь сферического треугольника S находится по следующей формуле:
где R — радиус сферы.
Следует отметить, что чем больше площадь треугольника, тем больше сумма его углов. Кроме того, чем больше площадь треугольника, тем больше сферический избыток, и именно поэтому больше значение А + В + С.
В евклидовой геометрии имеется следующий результат: длина окружности радиуса r равна 2r. В эллиптической геометрии этот результат выглядит следующим образом: длина окружности радиуса r всегда больше, чем 2r.
* * *
ПЛОЩАДЬ СФЕРИЧЕСКОГО ТРЕУГОЛЬНИКА НА ПОВЕРХНОСТИ ЗЕМЛИ
Давайте решим следующую задачу: какова должна быть площадь сферического треугольника на поверхности Земли, чтобы сумма его углов была больше 180° хотя бы на 1°? По формуле для площади сферического треугольника имеем:
Мы хотим найти значение S, такое что
Отсюда получаем
Выражая S и подставляя 6350 км вместо R, имеем
Следовательно, у любого треугольника на поверхности Земли, площадь которого равна или больше 703739,6319 км2, сумма углов будет превышать 180° по крайней мере на 1°.
* * *
В сферической геометрии теоремы синусов и косинусов выглядят следующим об разом:
Теорема косинусов также работает после так называемой круговой перестановки (замены а на Ь, b на с и с на а).
И снова теорема Пифагора из евклидовой геометрии имеет свой аналог в другом геометрическом пространстве. Но в сферической геометрии теорема Пифагора ведет себя несколько иначе. В этой геометрии она формулируется следующим образом: пусть R — радиус сферы, с — гипотенуза, а и b — две другие стороны сферического треугольника, а угол С — прямой угол, тогда: