Нестандартные задачи по математике в 4 классе
Шрифт:
Ответ: Вопрос: «Что бы Вы мне ответили, если бы я спросил Вас, ведет ли эта дорога в город?»
Задача 170. В турнире играли 6 шахматистов, по одной партии каждый с каждым. Андреев набрал 4 очка и занял 1 место, Бунин занял 2 место, Воронов и Гусев разделили 3–4 место, Дымов занял 5 место, а Егоров, занявший 6-е место, выиграл у Гусева. 5 партий турнира закончились вничью, причем Бунин сыграл вничью только один раз. Восстановить результаты всех партий.
Это задача с длинным решением. Ее можно предложить лишь
Всего в турнире сыграно 6 · 5 : 2 = 15 партий, значит, всеми игроками набрано 15 очков. Так как Андреев, занявший 1 место, имеет 4 очка, то остальные игроки могли набрать следующее число очков:
Бунин не более 3,5, Воронов и Гусев не более, чем по 3, Дымов не более 2,5, Егоров не более 2. Но именно такого числа очков они набрать не могли, так как 4 + 3,5 + 3 + 3 + 2,5 + 2 = 18, что на 3 очка больше, чем было. Займемся Егоровым. Мог ли он, кроме выигрыша у Гусева, набрать еще хоть пол-очка? Если это так, то у него не менее 1,5 очков, у Дымова не менее 2, у Гусева и Воронова не менее, чем по 2,5, у Бунина не менее 3, и в сумме — не менее 15,5 очков, что невозможно. Итак, Егоров все остальные партии проиграл:
Теперь займемся Буниным. Известно, что он сыграл только одну партию вничью, то есть набрал не целое число очков: либо 3,5, либо 2,5 (не 1,5, так как тогда он сосед Егорова). Если Бунин набрал 2,5 очка, то Воронов и Гусев набрали по 2 очка, а Дымов 1,5 очка. В сумме получается 12 очков, что недостаточно. Значит, Бунин набрал 3,5 очка:
Заметим теперь, что сумма очков — число целое, а так как Воронов и Гусев вместе набрали целое число очков (у них поровну), то Дымов набрал не целое число очков. Это может быть либо 1,5, либо 2,5 очка. Если 1,5, то Воронов и Гусев набрали по 2,5 очка. А если у Дымова 2,5 очка, то Воронову и Гусеву остается одно очко на двоих, что невозможно. Итак, имеем:
Осталось понять, как закончились партии. Обратим внимание на то, что, по условию, Бунин сыграл вничью только один раз, а из таблицы теперь видно, что и Дымов сыграл вничью только один раз, а остальные партии проиграл. Кроме того, известно, что вничью окончилось 5 партий в турнире. Если Бунин сыграл вничью с Дымовым, то остальных ничейных партий четыре. Рассмотрим этот случай.
Воронов сыграл еще раз вничью, а остальные партии проиграл. Он не мог сыграть вничью с Буниным, так как Бунин сыграл вничью всего одну партию. Значит, Бунину Воронов проиграл:
Осталось установить результаты пяти партий, из которых 4 — ничьи, и только одна результативная. Ясно, что это — выигрыш Андреева, так как если бы он ни одной партии больше не выиграл, то не набрал бы 4 очка. Итак, все партии, в которых не участвует Андреев, — ничейные:
Теперь
171 - 176
Задача 171. Андрей, Борис, Вадим и Геннадий заняли первые четыре места в соревновании по перетягиванию каната. На вопрос корреспондента, какое место занял каждый из них, было получено три ответа:
1) Андрей — первый, Борис — второй,
2) Андрей — второй, Геннадий — третий,
3) Вадим — второй, Геннадий — четвертый.
В каждом из этих ответов одна часть правдива, а вторая ложна. Кто занял какое место?
Приходится анализировать варианты. Это можно делать по-разному. Можно выяснить, возможно ли, чтобы в первом ответе первая часть была правдой, а вторая ложью, и так далее. Однако, удобнее проверить, возможно ли, чтобы тот или иной мальчик занял то или иное место. Чаще всего в ответах упоминаются Андрей и Геннадий. С любого из них и нужно начать. Начнем, например, с Андрея. Именно рассмотрим, мог ли Андрей занять первое место, мог ли второе, мог ли третье, мог ли четвертое.
Пусть Андрей занял первое место. Тогда в первом ответе первая часть — правда, а значит, вторая часть — неправда, то есть Борис — не второй (но и не первый, так как первый — Андрей), а третий или четвертый. Во втором ответе первая часть — неправда, так как Андрей — не второй, а первый. Значит, во втором ответе вторая часть — правда, откуда получается, что Геннадий — третий. Поэтому Борис — не третий, а четвертый, и мы получаем такое распределение:
Андрей — первый, Вадим — второй, Геннадий — третий, Борис — четвертый. Осталось с этой точки зрения просмотреть третий ответ. «Вадим — второй» — правда, «Геннадий — четвертый» — неправда. Все сходится.
Но, быть может, Андрей мог быть и вторым? Нет, так как тогда первый ответ был бы полностью ложным.
Не мог быть Андрей и третьим, так как тогда полностью ложен второй ответ.
Не мог быть Андрей и четвертым, что доказать несколько труднее — нужно сопоставлять разные ответы. Из первого следует, что Борис — второй, из второго — что Геннадий — третий, но тогда полностью лжив третий ответ.
Ответ: Андрей — первый, Вадим — второй, Геннадий — третий, Борис — четвертый.
Задача 172. Какой цифрой оканчивается выражение 23 · 24 · 25 + 321321 : 13?
Первое слагаемое оканчивается нулем, а второе семеркой.
Ответ: 7.
Задача 173. Доказать, что число людей, сделавших нечетное число рукопожатий, не может быть нечетным.
Общее число рукопожатий, сделанных всеми людьми, четно. И если бы сделавших нечетное число рукопожатий было нечетно, то это правило было бы нарушено. Полезно пригласить к доске трех человек и попросить их несколько раз пожать друг другу руки. Выясняется, что при каждом рукопожатии число рукопожатий, сделанных каждым, увеличивается на 2, так что оно всегда четно.
Задача 174. В краже дырки от бублика подозреваются четверо: А, Б, В и Г. На допросе они сказали: