Чтение онлайн

на главную

Жанры

Нестандартные задачи по математике в 4 классе
Шрифт:

Для обоих путников одинаково пройденное расстояние. Первый половину времени шел со скоростью 5 км/ч, а значит, он с большей скоростью прошел больше половины пути. Второй же ровно половину пути прошел с большей скоростью, значит, первый потратил времени меньше.

Ответ: Первый.

Задача 118. 1 кг грибов имеют влажность 99%. Их подсушили до 98 % влажности. Сколько теперь весят эти грибы?

Очень трудно предугадать ответ этой задачи. Советую попробовать сделать это в классе. Дети будут называть числа, близкие к 1 кг. А между тем, во время подсушивания испарялась вода, а сухое вещество, которого было и осталось 10 г, из 1 % превратилось в 2 %. Так

что масса грибов уменьшилась вдвое.

Ответ: 500 г.

Задача 119. В шахматы играют 20 человек, без ничьих, на выбывание. Сколько будет сыграно партий?

Это еще одна форма соревнований: проигравший одну партию сразу выбывает. Должно выбыть 19 человек, значит, партий должно быть столько, сколько человек должно выбыть.

Ответ: 19.

Задача 120. У меня остановились стенные часы, а никаких других часов у меня нет. Я пошел к другу, часы которого ходят верно, поиграл с ним в шахматы и, придя домой, смог верно поставить свои часы. Как мне удалось это сделать?

Я завел свои часы и запомнил, сколько времени они показывают. Придя к другу и уходя от него, я оба раза посмотрел на его часы, а поэтому я знал, сколько времени я пробыл у него и во сколько от него ушел. Придя домой, я определил по своим часам, сколько времени я отсутствовал, а вычтя из этого времени то время, которое пробыл у друга, определил, сколько времени я потратил на путь к нему и от него. Разделив это время пополам и прибавив его к последнему показанию часов друга, я определил время прибытия к себе домой. (Например, пусть я поставил свои часы на 12.00, придя к другу, увидел, что на его часах 16.00, уходя от него увидел на его часах 17.00, а придя домой, увидел, что мои часы показывают 13.30. Тогда я определяю, что отсутствовал 1,5 часа, из них ровно час был у друга, значит, на дорогу в оба конца потратил полчаса, а на путь от друга домой — 15 минут. Я ставлю свои часы на 17.15.)

121 - 130

Задача 121. Как с помощью сосудов вместимостью 3 и 7 л налить из водопроводного крана в чайник ровно 2 л воды?

Задача 122. В 1 кг сплава олова и никеля содержится 50 % олова. Сколько никеля надо добавить в этот сплав, чтобы он составил 60 % сплава?

Сначала нужно определить, сколько сейчас в сплаве никеля и сколько олова. Так как 100 % — это 1 кг, то олова в сплаве 500 г и никеля — 500 г. Чтобы никель составил 60 % сплава, нужно сделать так, чтобы 500 г олова составляли 40 % сплава, то есть чтобы в сплаве было 1250 г.

Ответ: 250 г.

Задача 123. Сорок учеников выстроены в прямоугольник по 10 человек в каждой шеренге и по 4 в каждой колонне. В каждой шеренге выбран самый низенький ученик, а затем из 4 отобранных выбран самый высокий. Им оказался ученик Андреев. Затем в каждой колонне был выбран самый высокий ученик и среди 10 отобранных выбран самый низенький. Им оказался ученик Петров. Кто выше, Андреев или Петров?

Пусть в той же колонне, что Андреев и в той же шеренге, что Петров, стоит Сергеев. Тогда он выше Андреева и ниже Петрова, то есть Петров выше Андреева:

Ответ: Петров.

Задача 124. В 1 стакане 20 % молока, а остальное — вода, в другом таком же стакане 80 % молока, а остальное — вода. Сколько процентов молока будет в кастрюле, если в нее выльют оба эти стакана?

Можно считать стакан равным, например, 0,2 л или совсем не оперировать определенным объемом (в зависимости от силы учащихся). Существенно здесь лишь то, что молоко из первого стакана будет составлять не 20 %, а 10 % всего объема, а молоко из второго стакана будет составлять не 80 %, а 40 % всего объема. Значит, всего молока в кастрюле окажется 10 % + 40 %.

Ответ: 50 %.

Задача 125. В клетках квадрата 3x3 были записаны натуральные числа так, что суммы чисел в каждой строке, в каждом столбце и в каждой диагонали были одинаковыми. Некоторые числа стерли. Осталось число 24 в нижнем правом углу, 15 в центре и 9 правее 15. Восстановите стертые числа.

Обозначим через а число в правом верхнем углу:

Так как суммы цифр во всех столбцах, строках и диагоналях одинаковы, то каждая из них равна а + 33. Значит, в левом нижнем углу стоит число 18:

Поставим число б левее числа 15:

Так как сумма в левом столбце равна сумме во второй строке, то есть равна 24 + б, то в верхнем левом углу стоит число 6:

У нас заполнилась диагональ, по которой можно найти сумму чисел в каждой строке, в каждом столбце и каждой диагонали. Эта сумма равна 6 + 15 + 24 = 45. Теперь можно заполнить и все остальные клетки:

Ответ:

Задача 126. Выписаны подряд все числа от 1 до 60, без пробелов между цифрами: 123456789101112…585960. Надо вычеркнуть 100 цифр, чтобы оставшееся число оказалось наименьшим.

Всего выписано 111 цифр (9 — на однозначные числа и еще 102 на 51 двузначное число). Значит, после вычеркивания 100 цифр останется 11-значное число. Чтобы оно было самым маленьким, нужно поставить в нем на первое место 1, а на последующие — нули. Однако нулей в нашей записи всего 6. Если мы выпишем их все, то за последним нулем цифр уже не останется. Попробуем оставить нули только от чисел 10, 20, 30, 40 и 50. Тогда у нас получится такое число: 10000051525354555657585960. От него можно оставить после 100000 еще 5 цифр. Так как нуль поставить нельзя, поставим самую маленькую из возможных — 1, вычеркнув первую пятерку после пяти нулей: 1000001525354555657585960. Теперь можно вычеркнуть еще три пятерки, оставляя следующие за ними цифры: 10000012340.

Ответ: 10000012340.

Задача 127. Фразу «Страшнее кошки зверя нет» зашифруй кодом Виженера с помощью шифра «дева»

Ответ: Цшубэузё пфылн неёхе рёч.

Задача 128. Сколько разломов надо сделать, чтобы разломать эту шоколадку на отдельные квадратики?

Вначале можно попробовать конкретные пути. В каждом случае будет получаться одно и то же: 23 разлома. И наконец, надо объяснить, что каждый разлом добавляет новый кусок. После первого разлома будет два куска, после второго три и так далее. Так как из одного куска нужно получить 24, то разломов будет 23.

Поделиться:
Популярные книги

Ветер перемен

Ланцов Михаил Алексеевич
5. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ветер перемен

LIVE-RPG. Эволюция 2

Кронос Александр
2. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.29
рейтинг книги
LIVE-RPG. Эволюция 2

Идеальный мир для Социопата 5

Сапфир Олег
5. Социопат
Фантастика:
боевая фантастика
рпг
5.50
рейтинг книги
Идеальный мир для Социопата 5

Proxy bellum

Ланцов Михаил Алексеевич
5. Фрунзе
Фантастика:
попаданцы
альтернативная история
4.25
рейтинг книги
Proxy bellum

Ваантан

Кораблев Родион
10. Другая сторона
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Ваантан

Архил...?

Кожевников Павел
1. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...?

Восьмое правило дворянина

Герда Александр
8. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восьмое правило дворянина

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Шатун. Лесной гамбит

Трофимов Ерофей
2. Шатун
Фантастика:
боевая фантастика
7.43
рейтинг книги
Шатун. Лесной гамбит

Бальмануг. (Не) Любовница 2

Лашина Полина
4. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бальмануг. (Не) Любовница 2

Курсант: Назад в СССР 7

Дамиров Рафаэль
7. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 7

Книга пяти колец. Том 2

Зайцев Константин
2. Книга пяти колец
Фантастика:
фэнтези
боевая фантастика
5.00
рейтинг книги
Книга пяти колец. Том 2

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Отмороженный 6.0

Гарцевич Евгений Александрович
6. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 6.0