Нестандартные задачи по математике в 4 классе
Шрифт:
Как же могли распределиться эти очки между ними? Мы можем это понять из условий задачи — из таблицы. Андреев мог набрать не больше З2 очков, так как сыграл вничью с Гордеевым. Гордеев набрал не меньше очка, так как сыграл вничью с Андреевым. Но тогда очки у участников, занявших места между Андреевым и Гордеевым, могут быть от 1 до 3. Минимально это могут быть следующие результаты:
Гордеев — 1\2 очка, Власов — 1 очко, Борисов — 1. 1\2 очка, Андреев — 2 очка. Однако, в этом случае общее число очков равно 5, а должно быть 6. Поэтому нужно распределить между участниками недостающее очко.
Попробуем дать еще пол-очка Гордееву. Тогда у него будет 1 очко, у Власова —
Попробуем, оставив 1\2 очка у Гордеева, дать лишние пол-очка Власову. Тогда у него будет 1. 1\2 очка, у Борисова — не меньше 2, у Андреева — не меньше 2. 1\2 очков. То есть общее число очков будет не менее 6. 1\2 очков, что превышает сумму в 6 очков. Вывод: у Гордеева 1\2 очка, у Власова 1 очко.
Попробуем увеличить на пол-очка результат Борисова. Тогда возможно такое распределение результатов: у Гордеева 1\2 очка, у Власова 1 очко, у Борисова 2 очка и у Андреева 2. 1\2 очка. Впрочем, можно не увеличивать число очков у Борисова, а дать лишнее очко Андрееву. Получим: у Гордеева 1\2 очка, у Власова 1 очко, у Борисова 1. 1\2 очка и у Андреева 3 очка. Однако, последний вариант невозможен, так как из ранее заполненной таблицы ясно, что у Борисова не меньше 2 очков. Остается первый вариант:
Тогда автоматически заполняются результаты Борисова и Андреева:
Ответ: Андреев выиграл остальные две партии, Борисов выиграл у Власова и Гордеева, Власов выиграл у Гордеева.
161 - 170
Задача 161. Сколько оборотов сделает зубчатое колесо с 16 зубцами, если сцепленное с ним колесо с 40 зубцами сделает 32 оборота?
За полный оборот большого колеса через точку сцепления А пройдет 40 зубцов, а за 32 его оборота — 40 · 32 = 1280 зубцов. Но это значит, что малое колесо сделает 1280 : 16 оборотов.
Ответ: 80 оборотов.
Задача 162. Поезд длиной 750 м шел по мосту 2 мин. Какова скорость поезда, если длина моста 1 км?
Паровоз продвинулся за 2 минуты на 1750 м. Разделив этот путь на время движения, получим скорость.
Ответ: 875 м/мин.
Задача 163. В этом примере пропущены два одинаковых числа. Какое число пропущено?
(385 — __ + 8) · (__: 385 + 9).
В первой скобке пропущенное число должно быть не больше 385, а во второй скобке — не меньше 385.
Ответ: 385.
Задача 164. Коля ездит из дома в школу на трамвае. От дома до школы ходят трамваи двух маршрутов: № 1 и № 2. Каждый из них приходит на остановку около дома Коли через каждые 4 минуты. Оказалось, что Коля гораздо чаще попадает на трамвай № 1, чем на № 2. Почему это возможно?
Это может быть, если разрыв между прибытием трамваев на остановку не одинаков.
Например, представим себе такое расписание
При таком расписании Коля будет чаще попадать на трамвай № 1.
Задача 165. Поезд длиной 750 м обгоняет поезд длиной 1 км за 10 мин. Какова скорость короткого поезда, если скорость длинного 60 км/час?
За 10 минут произошло следующее. Паровоз короткого поезда проехал мимо длинного поезда, а затем весь короткий поезд проехал мимо паровоза длинного поезда, то есть паровоз короткого поезда проехал суммарную длину обоих поездов со скоростью, равной разности скоростей этих поездов. Поэтому можно вначале найти суммарную длину обоих поездов, затем разделить ее на время (на 10 минут), а затем к полученной скорости прибавить скорость второго поезда.
Ответ: 70500 м/ч или 70,5 км/ч.
Задача 166. У Васи по математике вдвое больше пятерок, чем четверок. Сколько у него четверок и пятерок, если всего их 9?
Ответ: 3 четверки и 6 пятерок.
Задача 167. Поезд длиной 750 м проходит мимо такого же встречного поезда за 1 мин. Какова скорость первого поезда, если скорость второго 60 км/час?
За 1 минуту происходит следующее. Паровоз первого поезда проезжает мимо второго поезда, а затем весь первый поезд проезжает мимо паровоза второго поезда, то есть паровоз первого поезда проезжает суммарную длину обоих поездов со скоростью, равной разности скоростей этих поездов. Поэтому можно вначале найти суммарную длину обоих поездов (1500 м), затем разделить ее на время (на 1 минуту), а затем от полученной скорости 1500 м/мин отнять скорость второго поезда (60 км/час, или 1000 м/мин).
Ответ: 500 м/мин.
Задача 168. В этом примере пропущены два одинаковых числа. Какое число пропущено?
(742 :__ + 17) · (__ — 742 + 6).
В первой скобке пропущенное число должно быть не больше 742, а во второй скобке — не меньше 742.
Ответ: 742.
Задача 169. На острове живут правдивые и лжецы. Как одним вопросом у первого встреченного островитянина узнать, ведет ли данная дорога в город?