Путешествие от частицы до Вселенной. Математика газовой динамики
Шрифт:
Поскольку нам не важен порядок, в котором мы расположим N1 частиц, мы должны разделить это на все их возможные комбинации, а именно на N1!. Получаем:
Если мы осуществим ту же операцию для второго уровня, то получим похожую формулу, хотя в этом конкретном случае вместо N начальных возможностей у
Мы можем применить это рассуждение ко всем энергетическим уровням. Общее число комбинаций будет результатом их умножения:
Далее видим, что большинство членов сокращается и остается выражение:
Это распределение вероятностей и вывел Больцман.
* * *
Зато если большинство частиц имеют энергию, приближенную к средней, у нас есть много вариантов для выбора. Следовательно, наиболее вероятная комбинация значений энергии — та, в которой большинство частиц имеет энергию, приближенную к средней, и только энергия некоторых сильно отличается от средней. Поскольку энергия и скорость частицы связаны, мы можем сделать тот же вывод о скоростях.
Из предыдущего рассуждения следует, что распределение скоростей молекул газа имеет форму, похожую на ту, что показана на графике на стр. 57.
Как видно из этого графика, пик скоростей находится вокруг наиболее вероятной скорости, и чем больше мы отдаляемся от него, тем сложнее найти частицу с такой скоростью. Результат совпадает с тем, что нам говорит здравый смысл. Представим себе, что у нас есть частица, которая движется очень быстро; рано или поздно она столкнется с другой и передаст ей часть своей энергии, после чего замедлится. Если частица движется очень медленно, рано или поздно она столкнется с другой, более быстрой, и ее скорость увеличится. А частица, движущаяся со средней скоростью, скорее столкнется с частицами, движущимися с той же скоростью, и, следовательно, она не приобретет и не потеряет энергию.
Хотя распределение скоростей, которое мы видели выше, было предложено Джеймсом Клерком Максвеллом (1831–1879), именно Больцман подвел под его идеи теоретическое обоснование, поэтому его называют распределением Максвелла — Больцмана. В его математическом выражении используется экспоненциальная функция у основанная на числе Эйлера, е. Число е — это иррациональное число, приблизительно равное 2,71828. Вычисляется оно сложением следующего бесконечного ряда:
Точно так же как 23 — это 2·2·2, е можно возвести в любую степень: е3 = = е·е·е. Распределение Максвелла — Больцмана выражается с помощью экспоненциальной функции следующим образом:
где m — масса молекул газа, k — постоянная Больцмана, Т — температура газа и v — скорость молекулы. Экспонента быстро растет при росте v — поскольку 210 намного
* * *
ЧИСЛО ЭЙЛЕРА
Число Эйлера — одно из самых важных в математике. Кроме того, что это иррациональное число, у него есть ряд поистине волшебных свойств. Возможно, самое интересное из них то, что экспоненциальная функция, еx равна своему угловому коэффициенту. Возьмем следующий график.
Угловой коэффициент функции — это точка, которая определяется как отношение между возрастанием функции по высоте и возрастанием по горизонтали. На этом графике мы можем вычислить угловой коэффициент в каждой точке. Итак, если мы представим угловой коэффициент функции х, то получим тот же график.
Число Эйлера связано и с другим известным числом, . Существует уравнение, связывающее е с и мнимой единицей i, которая определяется как квадратный корень из -1:
ei– 1 = 0
Многие математики считают это уравнение одним из самых элегантных в истории науки, поскольку в нем самые важные числа собраны в простом тождестве.
* * *
До сих пор мы считали, что частицы газа подобны бильярдным шарам. Даже если они очень похожи, мы можем каким-то образом различить их. Например, мы можем снять их на видео и следить за их изменением или пометить их фломастером. Однако это предположение, которое, кажется, соответствует здравому смыслу, не работает для очень маленьких частиц, таких как атомы или молекулы. Не существует способа отличить два атома водорода, дело выглядит так, будто это одна и та же частица, которая одновременно находится в двух разных местах. Это справедливо для любой элементарной частицы — электрона, протона или фотона.
Указанная тонкость не имеет значения при анализе свойств газа комнатной температуры, но становится очень важной в изучении газовой динамики при низких температурах и высокой плотности. В этой ситуации распределение Максвелла — Больцмана дает ошибочный результат для распределения скоростей молекул.
Этот факт обязал физику полностью трансформировать математическую теорию, которая использовалась для описания объекта, образованного из нескольких частиц, благодаря чему были созданы новые типы статистики: статистика Бозе — Эйнштейна и статистика Ферми — Дирака, которые мы рассмотрим позже. Несмотря на то что основание этих дисциплин лежит в области физики, они могут считаться математическими инструментами.
Предположим, что у нас есть газ, состоящий из нескольких молекул. Возьмем две из них и заменим одну на другую. Изменилось ли при этом состояние газа?
Классическая физика утверждает, что изменилось: хотя обе частицы на практике неразличимы, им можно, например, дать имена — «Андрей» и «Филипп». В первом случае Андрей стоит слева, а Филипп справа, а во втором случае — наоборот. А поскольку микросостояние изменилось, то и целая вселенная, в которой Андрея и Филиппа поменяли местами, совсем не та же самая, что была до этой перемены.
Квантовая механика, то есть теория, описывающая микроскопический мир, дает другой ответ. Единственное, что нам важно во время изучения частицы, это ее степени свободы — числа, нужные для описания ее состояния. Например, состояние молекулы задано ее импульсом, положением и вращением вокруг своей оси. Если мы заменим ее на идентичную молекулу с тем же импульсом, положением и вращением, не существует способов различить эти частицы. Поскольку все получение информации о Вселенной сводится к замерам, обе частицы — на самом деле одна и та же. Даже в теории между ними невозможно найти различия.