Путешествие от частицы до Вселенной. Математика газовой динамики
Шрифт:
Энтропия Шеннона измеряется в битах. Если вычислить ее содержание в букве такого текста, как эта книга, окажется, что она равна примерно одному биту, что намного меньше восьми битов, необходимых для передачи этой буквы.
* * *
ШЕННОН И ФОН НЕЙМАН
Определение энтропии Шеннона, кажется, гораздо больше связано с информацией, чем с энтропией, так что выбор названия может показаться удивительным. Согласно некоторым его биографам, идея принадлежала великому математику Джону фон Нейману (1903–1957), который
* * *
Поскольку число также может быть выражено как цепочка символов, в нем тоже имеется некоторое количество информации и, следовательно, некоторая энтропия Шеннона. Самый простой способ вычислить энтропию числа — это рассмотреть его выражение в двоичной системе. При этом вместо привычных арабских цифр используются единицы и нули. Когда мы записываем число арабскими цифрами, то на самом деле используем степени числа 10:
2345 = 2·1000 + 3·100 + 4·10 + 5·1 = 2·103 + 3·102 + 4·101 + 5·100.
Но мы можем использовать и степени числа два. Возьмем, например, число 10:
10 = 1·8 + 0·4 + 1·2 + 0·1 = 1·23 + 0·22 + 1·21 + 0·20.
Его запись в двоичной системе выглядит так:
1010.
Значит, для передачи числа 10 требуется четыре бита информации. В десятичной форме мы могли бы выразить 10 как:
10,000000000…
И для его передачи нам потребовалось бы бесконечное число символов. Двоичное выражение десяти также можно было бы представить в виде:
1010,000000000000000…
И снова нам потребовалось бы бесконечное количество битов для передачи его в таком виде. Однако, поскольку ноль после запятой повторяется бесконечно, он не несет никакой информации, и его энтропия Шеннона равна нулю. Итак, энтропия Шеннона числа 10 — четыре бита.
Теперь обратим внимание на хорошо всем нам известное число — . Это иррациональное число, то есть его десятичное выражение представляет собой бесконечный ряд цифр, следующих друг за другом без какой-либо регулярности. Невозможно сказать, какой будет следующая цифра числа на основе предыдущих, даже если их тысячи миллионов. Какова же энтропия Шеннона этого числа?
Десятичное представление К выглядит следующим образом:
3,14159265358979323846264338327950288419716939937510582097494459230781…
Как видите, перед нами бесконечное число случайных и равновероятных знаков: следующей цифрой с одинаковой вероятностью могут быть как ноль, так и, например, три. В двоичном выражении число выглядит как:
11,0010010000111111011010101000100010000101101000110000100011010011…
И снова мы сталкиваемся с бесконечным рядом непредсказуемых нулей и единиц. В соответствии с определением энтропии Шеннона, число содержит бесконечное количество информации, поскольку каждый его знак соответствует одному биту, и таких знаков бесконечное количество.
Многие математики предполагают, что, поскольку число знаков К бесконечно и они следуют в случайном порядке, должна существовать
Теория информации Шеннона имеет принципиальное значение для разработки эффективных систем коммуникации, в которых нужно не только передать сообщение с минимальными затратами энергии, но и учитывать ошибки при передаче и предусмотреть возможность их исправления. В нашу эпоху телекоммуникаций энтропия Шеннона стала чрезвычайно важным компонентом технологий.
Другая область применения теории информации — лингвистика, где энтропия Шеннона используется для анализа избыточности языковых средств. Один из самых удивительных результатов формулируется следующим образом: из каждого текста можно исключить половину букв, и информация при этом сохранится. Как видите, язык — крайне избыточный инструмент для передачи сообщений. Также было открыто, что обычно самые короткие слова в языке встречаются чаще всего — в соответствии с законом минимального усилия, в котором можно увидеть параллель с принципом наименьшего действия в физике.
Поскольку любой физический или биологический процесс влечет за собой обмен и обработку информации, теория информации может применяться в изучении живых систем, например для определения плотности информации, содержащейся в молекуле ДНК. С этой точки зрения может быть проанализирован и человеческий мозг, поскольку этот орган в основном занимается обработкой информации. Последние оценки говорят о нашей способности обрабатывать примерно 50 битов в секунду. Подтверждает это и скорость нашего чтения: обычный человек читает около страницы в минуту. Если предположить, что на странице примерно триста слов, это составит около пяти слов в секунду, а если принять, что в слове 10 битов, окажется, что человек обрабатывает 50 битов в секунду.
Однако наши органы могут получить гораздо большее количество информации о внешнем мире. Так, глаза посылают в наш мозг около 10 млн битов в секунду. Но сырая информация, которую мы получаем, перед передачей в наши центры аналитической обработки должна быть очень сильно сжата.
Мы видели, что, согласно теории Шеннона, количество информации, содержащееся в числе у бесконечно. Но существует и другой способ восприятия данных: например, мы можем предположить, что вся информация, необходимая для вычисления знаков , содержится в математической формуле, описывающей это число, и, следовательно, нам не нужно бесконечное количество информации.
Этот альтернативный взгляд привел к появлению алгоритмической теории информации. Эта математическая теория, которая дополняет теорию Шеннона, была разработана сначала русским математиком Андреем Колмогоровым (1903–1987), а затем — аргентинско-американским математиком Грегори Хайтином (1947). Она основывается на понятии алгоритма — набора простых инструкций для компьютера. Ниже приведен пример алгоритма на вымышленном языке программирования, с помощью которого можно определить, является число символов во фразе четным или нечетным.