Путешествие от частицы до Вселенной. Математика газовой динамики
Шрифт:
* * *
ВЫЧИСЛЯЯ НЕВЫЧИСЛИМОЕ
Хотя постоянные Хайтина и невычислимы, в 2002 году математику Кристиану Калуду (родился в 1952 году) удалось вычислить первые шестьдесят четыре символа для одной из них. Используемый им способ заключался в том, чтобы взять все возможные программы с некоторым числом битов и выяснить, какие из них останавливаются. Вычислять знаки постоянной Хайтина — трудная задача, сложность которой растет с каждым новым знаком после запятой. Если бы в нашем распоряжении были хотя бы первые 10 тысяч битов постоянной Хайтина, мы бы находились на удивительном уровне
* * *
Энтропия Шеннона тесно связана с физической энтропией: она не только основана на ней, но и может полностью заменить старое определение. Если мы снова вернемся к газу, то можем задуматься о количестве информации, которое он содержит, то есть о числе битов, необходимых для определения положения и импульса каждой из его частиц.
Найти ответ на вопрос можно, рассмотрев микросостояния. Если у газа всего два возможных микросостояния, одного бита достаточно, чтобы определить, в каком из них он находится: ноль для первого, единица для второго. Но если у газа 100 тысяч микросостояний, количество информации равно наиболее близкой степени числа два, которая определяет число битов, необходимых для выбора одного из них.
Итак, количество информации пропорционально числу микросостояний, а именно его логарифму, как в физической энтропии. Другими словами, энтропия системы прямо пропорциональна информации Шеннона, которую она содержит: энтропия Шеннона соответствует физической энтропии. Как только мы провели эту параллель, можно рассматривать и те физические системы, которые до сих пор были закрыты для такой области, как информатика.
Например, мы можем задуматься, каково максимальное количество информации, которое может храниться в определенном объеме. Это открыло бы нам путь к законам, управляющим Вселенной: если количество информации на единицу объема конечно, то Вселенная, вероятно, дискретна, то есть существует минимальная единица длины, и невозможно разделить пространство на меньшие.
Для хранения информации нужна энергия. Эту задачу можно решить различными способами: с помощью изменения направления магнитного поля электронов в каком-то материале, как в случае с жесткими дисками, или проведя бороздки на пластике, в которых отражается свет лазера, как в DVD-дисках. Но нам всегда нужен какой-то физический носитель, поскольку вакуум не может содержать информацию. И если мы хотим узнать, какова максимальная информация, которую мы хотим поместить в каком-то месте, мы должны знать, какова максимальная энергия, которую мы можем в нем сжать.
К счастью, ответ на этот вопрос известен. Существует предел количества энергии, которую можно хранить в конкретном месте, и он задан импульсом, при котором эта энергия трансформируется в черную дыру.
Черная дыра — это область пространства, в которой материя так сжата, что даже свет не сможет высвободиться из нее, поскольку скорость освобождения выше скорости света. Скорость освобождения (или вторая космическая скорость) — это минимальная скорость, которую должно развить тело для того, чтобы преодолеть гравитационное притяжение планеты или звезды, на которой оно находится. Для Земли вторая космическая скорость равна примерно 11,2 км/с, но для черной дыры она
Эйнштейн также в своей известной формуле Е = mс2 показал, что масса и энергия — на самом деле одно и то же. Это означает, что огромная концентрация энергии соответствует огромной концентрации массы. Следовательно, можно создать черную дыру с помощью чистой энергии.
Итак, существует предел количества информации, которую можно хранить в какой-либо области пространства, и после превышения этого предела энергия хранения трансформируется в черную дыру. Как видите, максимальное количество информации содержат черные дыры.
Теперь выясним, сколько же информации содержится в черной дыре. Для этого нам потребуется вычислить ее энтропию. Стивен Хокинг (1942), пользуясь инструментами, лежащими на стыке квантовой механики, справедливой для микроскопического мира, и общей теории относительности, описывающей гравитационные поля, смог доказать, что черные дыры имеют некоторую температуру и, следовательно, энтропию. Ученый открыл нечто удивительное: энтропия пропорциональна не объему черной дыры, а ее площади. Это означает, что количество информации, которое можно хранить в области пространства, зависит не от объема этой области, а от ее площади. Этот вывод, казалось бы, противоречит здравому смыслу.
Поставим небольшой мысленный эксперимент. Предположим, что мы хотим сохранить некоторую информацию. Для этого мы строим маленькие кубики двух цветов — нули и единицы. Теперь мы должны составить эти кубики так, чтобы они заняли минимальное пространство. Естественное решение — расположить их рядом друг с другом, образуя трехмерную структуру. Очевидно, что чем большим объемом мы располагаем, тем больше кубиков сможем составить. Получается, что информация должна быть пропорциональна объему, который занимают кубики, а не площади.
Но это не так. Если кубики будут достаточно маленькими, то содержащаяся в них информация будет пропорциональна площади, которую они занимают, а не объему, как доказал Хокинг. Но это справедливо только в том случае, если кубики будут сжиматься в объеме, образовав в конце концов черную дыру — микроскопический объект, очень далекий от нашей повседневной действительности. Если плотность вещества меньше, чем в черной дыре, здравый смысл вновь будет демонстрировать свою эффективность.
Этот вывод Хокинга привел физическое сообщество к формулировке голографического принципа. Согласно ему, Вселенная представляет собой голограмму: кажется, что в ней три измерения, но на самом деле вся необходимая информация находится на плоскости. Знакомая нам трехмерная Вселенная не более чем иллюзия — на самом деле в ней на одно измерение меньше.
Формулировка голографического принципа обязала физическое сообщество пересмотреть такие понятия, как пространство или время. Поскольку в пространстве существует ограниченное количество информации, а само пространство может быть описано в двух измерениях, то, возможно, информация первична, а пространство само по себе вторично? Это утверждение привело к попыткам описать Вселенную в терминах информации, а пространство и время рассматривать в качестве ее вторичных следствий.
Как видите, физическое понятие снова нашло применение в математике, оно там было отшлифовано, расширено и вновь возвращено в лоно физики, чтобы стать основой революционных открытий в нашем понимании Вселенной.