Риск-менеджмент. Учебное пособие
Шрифт:
2. Эта мера разброса показывает отклонения в обе стороны, а нас интересует риск, то есть мера отклонения только в неблагоприятную сторону.
Рис. 1.
Нарисуем график, где на горизонтальной оси отложим стандартное отклонение s, на вертикальной – доходность r. При условии сделанного предположения для инвестора достаточно знания этих двух величин. Это значит, что портфель можно изобразить точкой, а инвестиционное решение должно приниматься
В теории Марковица обычно считается, что инвестор, во-первых, обладает свойством ненасыщения, то есть таким свойством, что чем больше доходность инвестиционного портфеля, тем ему лучше при прочих равных условиях. Во-вторых, инвестор обладает свойством избегания риска, свойством несклонности к риску.
Бывает три вида инвесторов: склонных к риску, избегающих риска и нейтральных к риску. Рассмотрим честную игру. Бросая монетку, с вероятностью 1/2 мы либо получаем, либо платим одну денежную единицу. Математическое ожидание выигрыша равно нулю ( 1/2 *(+1)+ 1/2 *(-1)=0). Для инвестора, несклонного к риску, моральное удовлетворение от выигрыша в одну единицу будет меньше, чем разочарование от проигрыша. Хотя он знает, что в среднем получается ноль, он откажется от игры. Склонный к риску инвестор рассуждает ровно наоборот. Нейтральный к риску скажет, что ему все равно, играть, или не играть.
Для инвесторов, несклонных к риску и обладающим свойством ненасыщения, рассматриваемых в теории Марковица, кривые безразличия выглядят следующим образом: положительно наклоненные и выпуклые вниз.
Кривая безразличия – это множество портфелей, обладающих свойствами доходности и риска, полностью описываемыми величинами r и s, одинаковых для инвестора с точки зрения его предпочтения – инвестиционного выбора. Кривая безразличия положительно наклонена, так как считается, что больший риск должен компенсироваться большей доходностью. Аналогичный подход используется в теории полезности.
Кривые безразличия не пересекаются. Между любыми двумя можно нарисовать третью. Для инвестора лучше, когда наш портфель оказывается левее и выше на приведенном рисунке, потому что при таком смещении либо увеличивается доходность, либо уменьшается риск, либо то и другое одновременно; поэтому кривая безразличия, расположенная левее и выше, предпочтительнее для инвестора.
Пусть:
N – количество активов,
x1 , …, xN –доли активов в портфеле,
< image l:href="#"/>Тогда доходность портфеля, rp, исходя из определения доходности, есть
Отсюда, очевидно, что ожидаемая доходность портфеля определяется формулой
Соответственно, для s получается, что риск портфеля есть
– коэффициент корреляции между доходностями i– ой и j– ой ценными бумагами.
Таким образом, риск5
,
содержащее коэффициенты корреляции. Коэффициенты корреляции могут быть как положительны, так и отрицательны; а следовательно, знак числа указанного выше может быть любой.
Таким образом, объединение бумаг в портфель может значительно изменить (уменьшить или увеличить) риск по сравнению со взвешенной суммой рисков бумаг, входящих в портфель (эффект диверсификации).
Посмотрим на рисунок 1. Нарисуем допустимое множество портфелей, т.е. все портфели, которые можно составить из рассматриваемого множества ценных бумаг с заданными характеристиками (ожидаемой доходностью и стандартным отклонением) и заданными коэффициентами корреляции. Обратим внимание, что поскольку x1 , …, xN (доли активов в портфеле) – это числа, принимающие любые значения, лежащие между нулем и единицей, то количество портфелей, которое можно составить из данных активов, бесконечно велико.
Пусть есть два объекта A и B, которые оцениваются по k критериям. Оценки объектов будут иметь вид a1…ak и b1…bk. По определению, объект А доминирует объект B по Парето (или по Эджворту-Парето, так как недавно обнаружили, что Эджворт ввел этот критерий раньше) или объект А сильно доминирует объект B, если оценки объекта A по всем критериям не хуже, чем оценки объекта B по всем критериям и хотя бы по одному критерию строго лучше, то есть
(где знаки «>=» и «>» означают «не хуже» и «строго лучше» при сравнении оценок по критерию).
Когда производится выбор из ряда альтернатив, оцениваемым по многим критериям, первым логичным шагом выбора всегда является их сравнение по Парето – ведь альтернатива, доминируемая по Парето заведомо хуже, чем доминирующая ее. Таким образом, перед тем, как производить дальнейшие действия, нужно выбрать из исходного множества альтернатив подмножество недоминируемых никакими другими по Парето и из них производить дальнейший выбор.
Рассмотрим это на примере портфельной теории Марковица. Обратимся к допустимому множеству X. Выберем один из портфелей из «середки» этого множества (пусть это будет портфель A). Утверждение: этот портфель доминируется по Парето другими, у которых риск такой же, а доходность выше (например, портфель B), или доходность такая же, а риск ниже (например, портфель С), или риск ниже, а доходность выше (например, портфель D).
Портфели, доминируемые по Парето, выбирать в качестве оптимальных не следует. Соответственно, первый этап решения инвестиционной задачи – отбросить варианты, доминируемые по Парето, то есть инвестиционные решения следует принимать только из портфелей эффективного множества. Эффективное множество – это множество портфелей из допустимого множества, не доминируемых по Парето никакими другими портфелями. На нашем рисунке они находятся левее и выше.