С чего начиналось
Шрифт:
1932 год можно считать годом выделения ядерной физики как отдельной области физической науки в нашей стране. В этом году в Ленинградском физико-техническом институте был создан отдел ядерной физики. Фактическим его руководителем стал И.В. Курчатов. Для работы в отделе были приглашены работники других научных организаций, в частности несколько человек из Радиевого института. Одним из них был талантливый учёный Л.М. Мысовский, который разработал методы и приборы для измерения космического излучения. В частности, он предложил и создал оригинальный метод толстослойных фотоэмульсий, до настоящего времени чрезвычайно широко применяющийся во всех странах при изучении радиоактивности, космического излучения, ядерных процессов. «Каждый месяц, даже неделя 1932 года, «года чудес», исключительного по концентрации событий, приносил открытия или фундаментальные идеи, – пишет один из участников этих событий Д.Д. Иваненко. – В том году были открыты нейтрон, позитрон, тяжёлый водород, геомагнитный эффект космических лучей, построены первые ускорители протонов. Далее последовало открытие космических ливней и искусственной радиоактивности». «Великим трехлетием» называют учёные развитие физической науки в 1932-1934 годах.
Когда профессору Курчатову было тридцать лет
В 1933 году на II
Годы примерно до 1938-го – это время интенсивного накопления научно-технического потенциала. В разных странах создавалось необходимое оборудование, разрабатывались методы проведения экспериментов и строились уникальные установки.
После открытия нейтрона в 1932 году начались интенсивные исследования действия нейтронного облучения на различные элементы. Опыты по облучению нейтронами урана проводились в 1934 году итальянским физиком Э. Ферми в Римском университете. Ферми полагал, что если облучать уран медленно движущимися нейтронами, то некоторые из них могут проникнуть в ядро и, возможно, там останутся, а в ядре может иметь место процесс с эмиссией из него какой-то лёгкой частицы, например электрона или позитрона, в результате чего появится новый элемент – тяжелее урана. Такие новые элементы должны будут находиться «за ураном» и относиться к трансурановым. Опыты Ферми оказались обнадёживающими, и эмиссия электронов из урана была зафиксирована. Вместе с тем результаты опытов были в целом неясны. Затем сходные эксперименты были поставлены другими исследователями, и результаты привели всех в замешательство. Ирэн Жолио-Кюри повторила опыт Ферми и, проведя тщательный анализ облучённого нейтронами урана, обнаружила в нем лантан. Да, лантан, находящийся в середине таблицы Менделеева! Откуда же он взялся?
Только через пять лет результаты этих опытов были правильно поняты, В начале 1939 года появилась первая ниточка, дававшая возможность выбраться из лабиринта непонятных, ставивших в тупик результатов облучения урана нейтронами, Немецкие физики О. Ган и Ф. Штрассман открыли в 1939 году деление ядер урана под действием нейтронов. Среди продуктов этого воздействия они затем нашли барий, расположенный в таблице Менделеева весьма далеко от урана. Казалось, не было никаких разумных оснований рассматривать его именно в качестве продукта воздействия на уран. Ведь все исследователи, проводившие такие опыты, ожидали появления некоего элемента, находящегося вблизи от урана, с близким атомным весом. Ган и Штрассман, опубликовав своё сообщение, одновременно поставили о том в известность австрийского физика Лизе Майтнер, начинавшую свою деятельность в Берлинском университете, в лаборатории Гана. Теперь же она вместе со своим племянником, талантливым физиком О. Фришем, находилась в Дании (куда они бежали из фашистской Германии), где работала в Физическом институте Н. Бора. Майтнер пришла в голову кардинальная мысль: может быть, уран, когда он поглощает нейтрон, делится на две примерно равные части? Этим можно объяснить появление бария, который составляет по массе около половины массы урана. Это означало бы, что, в соответствии с установленным А. Эйнштейном уравнением эквивалентности массы и энергии, при делении урана должна высвобождаться огромная энергия. Своё сообщение Майтнер опубликовала в феврале 1939 года в английском научном журнале. Но за две недели до того И. и Ф. Жолио-Кюри экспериментально доказали деление ядра урана под действием нейтрона на два осколка. Вставал практический вопрос: откуда взять нейтроны для промышленного получения энергии? Природные источники нейтронов маломощны. Но, даже при наличии мощных нейтронных источников, энергия, затраченная на получение нейтрона, будет больше энергии, выделяемой при реакции нейтрона с ядром урана. Тем самым идея использования атомной энергии пока не находила решения. В 1940 году советские физики К.А. Петржак и Г.Н. Флёров, изучая деление ядер урана, открыли новое явление – самопроизвольное их деление, при котором испускаются нейтроны [7] . При самопроизвольном делении ядер урана непрерывного процесса расщепления нет. Делятся лишь единичные ядра, нейтронов испускается очень мало. Следовательно, не может быть организовано промышленное получение атомной энергии. Как быть? И вот в том же, 1940 году советские физики Ю.Б. Харитон и Я.Б. Зельдович определили условия, необходимые для того, чтобы ядерный процесс шёл непрерывно, имея цепной характер. Требовалось использовать обыкновенную воду в качестве замедлителя при небольшом обогащении естественной смеси изотопов урана лёгким изотопом урана-235.
7
А. Алиханов. Проблемы физики атомного ядра, – «Известия», 1940, 20 ноября.
Когда оглядываешься назад и сопоставляешь научно-исследовательские учреждения СССР нынешнего времени с тем, что было в начале двадцатых и даже тридцатых годов, невольно склоняешь голову перед теми учёными-энтузиастами, которые тогда почти на пустом месте воздвигали величественное здание науки, удивляющее ныне мир своими открытиями и достижениями. В газете «Правда» 21 ноября 1933 года Д. Заславский в статье «От азбуки до атомного ядра» писал: «Неграмотна была вся дореволюционная Россия… В 1894 году во всей царской России грамотные составляли всего 23,3 процента. Это в среднем, а в Черниговской губернии грамотные составляли только 16,3 процента, в Подольской —10,5 процента, а в некоторых уездах Волынской – только 6,3 процента. И вот прошло менее сорока лет, и в 1933 году только в научно-исследовательских учреждениях Украины уже работают 5342 научных работника». В газете была опубликована фотография четырёх учёных: А.И. Лейпунского, К.Д. Синельникова, А.К. Вальтера и А.В. Шубникова, Самому старшему из этой четвёрки А.В. Шубникову было 38 лет. А остальные
Ключи к решению проблемы
После открытия нейтрона интенсивность научно-исследовательских работ в нашей стране значительно возросла. «В 1932 году в Радиевом институте по инициативе проф. Л.В. Мысовского приступили к проектированию и постройке мощного синхронного ускорителя в магнитном поле», – писал В.Г. Хлопин, подводя итоги деятельности Радиевого института. Он указывал на то, что сооружение синхронного ускорителя незадолго до этого осуществлено, правда, в значительно меньших размерах, в Америке – Лоуренсом и Ливингстоном. Создание отечественного ускорителя проводилось исключительно силами коллектива Радиевого института и заводов «Большевик» и «Электросила». Работавшая на этой установке бригада в составе профессоров А.И. Алиханова, И.В. Курчатова, Л.В. Мысовского и инженеров В.Н. Рукавишникова, Д.Г. Алхазова, К.А. Бризамейстера и П.И. Мастицкого «в настоящее время вполне освоила эту установку». Что же это за установка? В.Г. Хлопин так писал о ней: «Большой циклотрон Радиевого института в настоящее время является единственной действующей установкой этого рода не только в Союзе, но и в Европе, где, сколько нам известно, строятся уже в течение нескольких лет три такие установки, до сих пор не поступившие ещё в эксплуатацию» [8] .
8
Вестник АН СССР, 1938, № 7-8, с. 33.
На сессии Академии наук СССР в 1936 году с большим докладом, посвящённым исследованию атомного ядра и освещению роли советских физиков в разработке этой проблемы, выступил блестящий физик-теоретик Игорь Евгеньевич Тамм. Он отметил, что практически наиболее важная задача – использование внутриядерной энергии – ещё весьма далека от своего разрешения, но более скромных применений ядерных явлений, например использование искусственной радиоактивности в медицинских целях, можно ждать в ближайшее время.
Вместе с тем теория атомного ядра за последние годы продвинулась далеко вперёд; после того как была открыта новая элементарная частица – нейтрон, была создана и новая теория, согласно которой только протоны и нейтроны, но не электроны, составляют ядро атома.
В заключении своего доклада И.Е. Тамм поставил ряд наиболее важных задач как в области теории, так и экспериментальных исследований. Он наметил также первоочередные практические мероприятия, необходимые для успешного развития работ по атомному ядру. Особое значение он придавал точному разграничению деятельности отдельных лабораторий – сосредоточению усилия учёных на углублённой разработке определённого круга проблем.
Об организации физических исследований в стране говорил на сессии академик А.Ф. Иоффе: «По мере роста Ленинградского физико-технического института из него выделялись самостоятельные институты, которые частью продолжали работать в Ленинграде (электрофизический институт, институт химической физики и др.), частью были перенесены на периферию (Сибирский, Уральский, Украинский, Днепропетровский институты). Для пополнения кадров при ряде втузов были созданы физические факультеты».
Доклады И.Е. Тамма и А.Ф. Иоффе свидетельствовали о значительном оживлении физических исследований, проводившихся в стране. Это отметили также прибывшие в Советский Союз в сентябре 1936 года знаменитые французские учёные Фредерик Жолио-Кюри и его жена Ирен Жолио-Кюри. В беседе с представителями печати они поделились впечатлениями о своём пребывании в Москве, подчеркнув те разительные перемены, которые произошли за три года после первого приезда Ф. Жолио-Кюри в Советский Союз. «Мы имели возможность ознакомиться, – сообщили супруги, – с постановкой работы великолепных научных и учебных лабораторий в физических институтах Москвы, где ведётся интенсивная исследовательская деятельность и приобщается к науке громадное количество студентов. На заседании физической группы Академии наук, к участию в котором мы были приглашены, присутствовали советские научные работники, приехавшие на заседание из разных городов Союза. Мы находим, что принятая в вашей стране практика таких научных сессий с приглашением представителей научных учреждений разных городов за счёт бюджета самих институтов чрезвычайно способствует развитию научной жизни во всей стране; мы считаем, что подобная практика могла бы принести большую пользу и у нас во Франции, где ограниченность кредитов на научно-исследовательскую работу до сих пор весьма затрудняла общение работников центральных научных учреждений с провинциальными, которые по сравнению с Парижем живут значительно менее интенсивной жизнью» [9] .
9
Вестник АН СССР, 1936, № 10, с. 75-76.
Заседание физической группы было посвящено вопросам строения атомного ядра. Именно здесь супруги Жолио-Кюри сообщили о результатах своих работ по исследованию явлений естественной и искусственной радиоактивности элементов, проведённых в Институте имени Кюри в Париже.
В сентябре 1937 года произошло ещё одно незабываемое событие в области ядерной физики. С 20 по 27 сентября в Москве была созвана II Всесоюзная конференция по атомному ядру. В ней приняли участие все советские физики, работавшие в этой области, и ряд крупных зарубежных учёных, в том числе В. Паули из Цюриха, П. Оже из Парижа, Э. Дж. Вильям и Р. Пайерлс из Лондона. На конференции было представлено 28 докладов, из которых 22 сделали советские учёные. В конце конференции были заслушаны доклады, посвящённые проблеме сил, действующих внутри ядра. И.Е. Тамм сказал, в частности, что «наши знания о природе ядерных сил находятся в самом зачаточном состоянии. Имеющиеся данные относятся лишь к вопросу о величине этих сил и их зависимости от расстояния. Что же касается их физической природы, то эта проблема остаётся до сих пор открытой. Мы можем только сказать, что эти силы принципиально отличны от тех сил, с которыми мы до сих пор сталкивались в природе» [10] . Когда спустя восемь лет я читал эти строки, то невольно задумался. Проблема ядерных сил до сих пор не раскрыта. А ведь мы хотим использовать эти силы. Чего же мы добиваемся? Осуществить неосуществимое? Я задал этот вопрос известному физику В.И. Векслеру, с которым был тесно связан по работе. На мой вопрос он ответил так:
10
Вестник АН СССР, 1937, № 9, с. 66.