Сборник задач по математике с решениями для поступающих в вузы
Шрифт:
1.19. Углы С, A, В треугольника ABC образуют геометрическую прогрессию со знаменателем 2. Пусть O — центр окружности, вписанной в треугольник ABC, K — центр вневписанной окружности, касающейся стороны AC, L — центр вневписанной окружности, касающейся стороны BC. Докажите, что треугольники ABC и OKL подобны.
1.20. В треугольнике ABC углы A, В
1.21. Докажите, что если P, Q, R — соответственно точки пересечения каждой из сторон BC, CA, AB (или их продолжений) треугольника ABC с некоторой прямой, то
(теорема Менелая).
1.22. Точка D находится на стороне BC треугольника ABC. Докажите, что
AB^2 · DC + AC^2 · BD - AD^2 · BC = BC · DC · BD
(теорема Стюарта).
1.23. На сторонах треугольника ABC взяты точки P, Q и R так, что три прямые AP, BQ и CR пересекаются в одной точке. Докажите, что
(теорема Чевы).
1.24. Через произвольную точку O, взятую внутри треугольника ABC, проведены прямые DE, FK, MN, параллельные соответственно AB, AC, BC, причем F и M лежат на AB, E и K — на BC, N и D — на AC. Докажите, что
1.25. Через центр O правильного треугольника ABC проведена произвольная прямая. Докажите, что сумма квадратов расстояний от вершин треугольника до этой прямой не зависит от выбора прямой.
1.26. Вокруг треугольника ABC, в котором а = 2, b = 3 и угол C = 60°, описана окружность. Определите радиусы окружностей, проходящих через две вершины треугольника и центр описанной окружности.
1.27. Стороны треугольника связаны соотношением а^2 = c(b + с). Докажите, что угол A вдвое больше угла C.
1.28. Пусть O — центр окружности, вписанной в треугольник ABC. Докажите, что если OA^2 = OB · OC, то
1.29. Площадь , треугольника ABC удовлетворяет соотношению S = а^2 - (b - с)^2. Найдите угол A.
1.30. На сторонах треугольника внешним образом построены квадраты. Докажите, что расстояние между центрами квадратов, построенных на боковых сторонах, равно расстоянию от центра квадрата, построенного на основании, до противоположной вершины треугольника.
1.31. В треугольнике ABC единичной площади проведен отрезок AD, пересекающий медиану CF в точке M, причем FM = 1/4 CF. Найдите площадь треугольника ABD.
1.32. Докажите, что произведение диагоналей вписанного четырехугольника равно сумме произведений противоположных сторон (теорема Птолемея).
1.33. Отрезок, соединяющий середины оснований трапеции, равен их полуразности. Найдите сумму углов при большем основании трапеции.
1.34. Через центр квадрата ABCD проведена прямая, пересекающая сторону AB в точке N, причем AN : NB = 1 : 2. На этой прямой взята произвольная точка M, лежащая внутри квадрата. Докажите, что расстояния от точки M до сторон квадрата AB, AD, BC и CD, взятые в названном порядке, образуют арифметическую прогрессию.
1.35. Квадрат и правильный треугольник, имеющие общую вершину, вписаны в окружность единичного радиуса. Найдите площадь, покрытую и квадратом и треугольником.
1.36. В окружность вписаны равнобедренный остроугольный треугольник площадью S, и трапеция так, что ее большее основание совпадает с диаметром окружности, а боковые стороны параллельны боковым сторонам треугольника. Средняя линия трапеции равна l. Найдите высоту трапеции.
1.37. Найдите отношение площади трапеции ABCD к площади треугольника AOD, где O —точка пересечения диагоналей трапеции, если известно, что
1.38. Два правильных многоугольника с периметрами a и b описаны около окружности, а третий правильный многоугольник вписан в эту окружность. Второй и третий многоугольники имеют каждый вдвое больше сторон, чем первый. Найдите периметр третьего многоугольника.