Чтение онлайн

на главную - закладки

Жанры

Сборник задач по математике с решениями для поступающих в вузы

Ваховский Евгений Борисович

Шрифт:

3.14. Докажите, что в усеченной пирамиде сторона квадрата, равновеликого площади сечения пирамиды, проходящего через середину высоты пирамиды параллельно ее основанию, равна среднему арифметическому сторон квадратов, равновеликих основаниям пирамиды.

3.15. В пирамиде ABCD дано BC = а, CA = b, AB = с, DA = а1, DB = b1, DC = с1.

Найдите косинус острого угла между скрещивающимися ребрами AD и BC этой пирамиды.

3.16. Плоскость, проходящая через одно из ребер правильного тетраэдра, делит его объем в отношении 3 : 5. Найдите тангенсы углов и , на которые эта плоскость делит двугранный угол тетраэдра.

3.17. В правильной четырехугольной пирамиде двугранный угол при основании равен . Через ребро основания проведена внутри пирамиды плоскость, составляющая с основанием угол . В каком отношении она делит площади тех боковых граней, которые она рассекает на два треугольника?

3.18. Высота треугольной пирамиды ABCD, опущенная из вершины D, проходит через точку пересечения высот треугольника ABC. Кроме того, известно, что DB = b, DC = с, BDC = 90°. Найдите отношение площадей граней ADB и ADC.

3.19. В треугольной пирамиде SABC все плоские углы трехгранных углов с вершинами в точках A и B равны , AB = а. Определите объем пирамиды.

3.20. Две грани треугольной пирамиды — равнобедренные прямоугольные треугольники с общей гипотенузой AB. Двугранный угол при AB равен . Найдите двугранный угол, у которого ребро есть катет.

3.21. В треугольной пирамиде SABC два плоских угла ASB и BSC при вершине S равны , а третий плоский угол ASC равен /2. Ребро AS перпендикулярно к плоскости основания ABC. Найдите угол BAC.

3.22. В тетраэдре ABCD ребро AB = 6, ребро CD = 8, а остальные ребра равны 74. Найдите радиус R описанного шара.

3.23. В правильной треугольной пирамиде двугранный угол между боковыми гранями равен . Найдите высоту данной пирамиды, если расстояние от основания высоты до бокового ребра равно а. Ответ приведите к виду, удобному для логарифмирования.

3.24. В основании треугольной пирамиды лежит правильный треугольник со стороной а. Одна боковая грань пирамиды представляет собой равнобедренный треугольник с боковой стороной b (b /= а) и перпендикулярна к плоскости основания. Найдите площадь сечения, которое

является квадратом и пересекает эту грань по прямой, параллельной основанию.

3.25. Боковые ребра треугольной пирамиды равны а, b, с. Плоские углы при вершине прямые. В пирамиду вписан куб так, что одна его вершина находится в вершине пирамиды, а противоположная лежит в плоскости основания пирамиды. Найдите ребро куба.

3.26. В правильную треугольную пирамиду с высотой h вписан куб с ребром а так, что основание куба лежит на основании пирамиды. Найдите объем пирамиды.

3.27. Трехгранный угол, образованный тремя взаимно перпендикулярными прямыми, пересечен плоскостью. Докажите, что полученный в сечении треугольник остроугольный.

3.28. Найдите объем тетраэдра ABCD, если BC = AD = а, CA = DB = b, AB = DC = с.

3.29. В пирамиде ABCD объем V = 48, AB = 12, CD = 8. Расстояние между AB и CD равно 6. Найдите угол между ребрами AB и CD.

3.30. В правильной треугольной призме ABCA1B1C1 проведена плоскость A1BC. В образовавшуюся над этой плоскостью часть призмы вписан шар радиусом R. Найдите объем призмы.

3.31. Ребро правильного тетраэдра равно а. Найдите радиус шара, касающегося всех ребер тетраэдра.

3.32. В прямоугольный параллелепипед с ребрами а, b и с помещен куб так, что вершина куба O совпадает с вершиной параллелепипеда. Найдите угол между диагоналями куба и параллелепипеда, проведенными через вершину O.

3.33. Сторона треугольника равна а. Разность прилегающих к ней углов равна . На треугольнике, как на основании, построена прямая призма. Через ее ребро, противоположное стороне а, проведено сечение площади S, делящее двугранный угол пополам. Найдите объем призмы.

3.34. Найдите расстояние между двумя непересекающимися диагоналями смежных граней куба, ребро которого равно а.

3.35. Ребро куба равно а. Сфера с центром в точке O делит три ребра куба, сходящихся в вершине А, пополам. Из одной такой точки деления K опущен перпендикуляр на диагональ куба, проходящую через вершину А. Угол между этим перпендикуляром и радиусом сферы ОК делится ребром куба пополам. Найдите радиус сферы.

Поделиться:
Популярные книги

Охота на разведенку

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
6.76
рейтинг книги
Охота на разведенку

Имперец. Том 1 и Том 2

Романов Михаил Яковлевич
1. Имперец
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Имперец. Том 1 и Том 2

Чужое наследие

Кораблев Родион
3. Другая сторона
Фантастика:
боевая фантастика
8.47
рейтинг книги
Чужое наследие

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке

Хозяйка дома в «Гиблых Пределах»

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.75
рейтинг книги
Хозяйка дома в «Гиблых Пределах»

Идеальный мир для Лекаря 15

Сапфир Олег
15. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 15

Мимик нового Мира 8

Северный Лис
7. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 8

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Бальмануг. (не) Баронесса

Лашина Полина
1. Мир Десяти
Фантастика:
юмористическое фэнтези
попаданцы
5.00
рейтинг книги
Бальмануг. (не) Баронесса

Последний реанорец. Том I и Том II

Павлов Вел
1. Высшая Речь
Фантастика:
фэнтези
7.62
рейтинг книги
Последний реанорец. Том I и Том II

Мне нужна жена

Юнина Наталья
Любовные романы:
современные любовные романы
6.88
рейтинг книги
Мне нужна жена

Бремя империи

Афанасьев Александр
Бремя империи - 1.
Фантастика:
альтернативная история
9.34
рейтинг книги
Бремя империи

Совок-8

Агарев Вадим
8. Совок
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Совок-8

Вперед в прошлое 6

Ратманов Денис
6. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 6