Чтение онлайн

на главную - закладки

Жанры

Сборник задач по математике с решениями для поступающих в вузы

Ваховский Евгений Борисович

Шрифт:

10.12. Данные уравнения симметричны относительно у и z и не симметричны (второе) относительно x. Если воспользоваться вторым уравнением и из первого выразить у + z через x, то мы получим простую систему относительно у и z, где x выступает в роли свободного члена.

10.13. Данные уравнения можно переписать в виде

у + z = 5 - x, yz + x(z + y) = 8,

после

чего можно получить уравнение, корнями которого будут у и z, а коэффициенты будут зависеть от x.

10.14. Нужно рассмотреть три случая, в зависимости от того, положителен, отрицателен или равен нулю дискриминант трехчлена. Затем обратить внимание на знак старшего коэффициента. (!)

10.15. Так как коэффициент при x^2 положителен, то ветви параболы направлены вверх. Рассмотреть возможное расположение корней параболы относительно отрезка 1 < x < 2.

10.16. Воспользоваться теоремой Виета и рассмотреть случаи, когда х1 и x2 одного знака и разных знаков.

10.17. Определить направление ветвей параболы и расположение ее корней относительно точек -1 и +1, чтобы условия задачи выполнялись.

10.18. Если m /= 0 (случай m = 0 следует рассмотреть отдельно), то ветви параболы у = mx^2 - 4x + 3m + 1 должны быть направлены вверх.

10.19. Рассмотреть случаи, позволяющие раскрыть знаки абсолютной величины. Удобнее записать это неравенство как совокупность двух систем: в первой выражение, стоящее под знаком абсолютной величины, неотрицательно, а во второй системе оно отрицательно. (!)

10.20. Чтобы избавиться от знаков абсолютных величин, достаточно вспомнить о том, как они могли быть получены, например

 = |x– 3|. (!)

10.21. Чтобы упростить данное неравенство, его нужно умножить на 4x. Поскольку результат будет зависеть от знака x, необходимо рассмотреть два случая: x < 0 и x > 0. (!)

10.22. Если перенести 3 в левую часть неравенства и привести полученное выражение к общему знаменателю, то получим дробь, которая должна быть отрицательной.

10.23. Неравенство можно упростить, если перенести все в одну сторону, привести выражения, стоящие под радикалами, к общему знаменателю и вынести за скобки неотрицательный множитель

10.24. Удобно рассмотреть два случая: x > 0 и x < 0 (при x = 0 сразу видно, что неравенство

не выполняется).

10.25. В неравенство входит сумма двух выражений: x ,

 — и их удвоенное произведение. Кроме этого, в правой части стоит член -2x, который после перенесения его в левую часть можно использовать для образования суммы квадратов этих выражений.

10.26. Поскольку второе слагаемое всегда неотрицательно, целесообразно рассмотреть два случая: x > 0 и x <= 0.

10.27. Если привести обе части неравенства к основанию 2, то можно заметить симметрию показателей.

10.28. Если перенести все влево и сгруппировать члены, содержащие иррациональное выражение в показателе степени, то это поможет разложить левую часть на множители. (!)

10.29. Придется разобрать два случая: x > 0 и x <= 0. Когда x > 0, данное неравенство равносильно такому:

10.30. Чтобы сравнить показатели степени, необходимо выяснить, как основание расположено по отношению к единице.

10.31. Так как обязательно x > 0, то можно упростить неравенство, разделив обе его части на x.

10.32. При x > 0 получаем равносильное неравенство

Что будет при x < 0?

10.33. При возведении в квадрат нужно потребовать, чтобы подкоренное выражение было неотрицательным. (!)

10.34. Выражение, стоящее под знаком логарифма, должно быть положительным. Абсолютная величина выражения неотрицательна. Как видите, это не совсем одно и то же. (!)

10.35. При решении логарифмических неравенств удобнее иметь дело с одинаковыми основаниями логарифмов. Если вы выбрали в качестве такого основания число 5, то обратите внимание на правую часть неравенства. Осуществив в ней почленное деление числителя на знаменатель, вы обнаружите, что

При этом появляются ограничения x > 0, x /= 1. Существенны ли они в процессе решения?

10.36. Перейти к одному основанию и получить под знаками логарифма одинаковое число. (!)

10.37. Неравенство легко приводится к виду

log|x + 6|(x^2 - x– 2) >= 1. (!)

10.38. Если обозначить logаx = у, то получим простое неравенство относительно у.

10.39. Перейти к общему основанию k.

Поделиться:
Популярные книги

Назад в СССР: 1986 Книга 5

Гаусс Максим
5. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Назад в СССР: 1986 Книга 5

Неудержимый. Книга III

Боярский Андрей
3. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга III

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Конструктор

Семин Никита
1. Переломный век
Фантастика:
попаданцы
альтернативная история
4.50
рейтинг книги
Конструктор

Наследник Четырех

Вяч Павел
5. Игра топа
Фантастика:
героическая фантастика
рпг
6.75
рейтинг книги
Наследник Четырех

Чехов. Книга 2

Гоблин (MeXXanik)
2. Адвокат Чехов
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Чехов. Книга 2

Легат

Прокофьев Роман Юрьевич
6. Стеллар
Фантастика:
боевая фантастика
рпг
6.73
рейтинг книги
Легат

Земная жена на экспорт

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Земная жена на экспорт

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Столичный доктор. Том II

Вязовский Алексей
2. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том II

Столичный доктор. Том III

Вязовский Алексей
3. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том III

Пропала, или Как влюбить в себя жену

Юнина Наталья
2. Исцели меня
Любовные романы:
современные любовные романы
6.70
рейтинг книги
Пропала, или Как влюбить в себя жену

Нефилим

Демиров Леонид
4. Мания крафта
Фантастика:
фэнтези
боевая фантастика
рпг
7.64
рейтинг книги
Нефилим

Бывший муж

Рузанова Ольга
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Бывший муж