Техника и вооружение 2014 12
Шрифт:
На протяжении ряда лет А.С. Ефремов являлся постоянным автором журнала «Техника и вооружение». Его публикации, посвященные боевым машинам разработки ОАО «Спецмаш» (в основном танкам Т-80 и машинам на его базе), заслужили признание широкого круга читателей.
Светлая память об Александре Сергеевиче Ефремове навсегда останется в наших сердцах.
Коллектив ОАО «Спецмаш» и редакция журнала.
Г. Рудианов, полковник запаса, доцент
Точная стрельба в любую погоду
Одним из важнейших показателей эффективности действий артиллерии является точность стрельбы, поэтому улучшению данного показателя всегда уделялось повышенное внимание. Основная сложность при этом заключается в том, что большинство артиллерийских боеприпасов являются неуправляемыми, т.е. после выстрела снаряд подвержен дестабилизирующему влиянию порывов ветра и изменения плотности воздуха, и повлиять на траекторию снаряда в процессе полета уже невозможно.
Влияние атмосферы на полет снаряда можно разделить на следующие факторы: влияние ветра (продольной и боковой составляющей) и влияние плотности воздуха. Продольный ветер изменяет дальность падения снаряда, а боковой ветер смещает снаряд по направлению. Плотность воздуха определяет силу лобового сопротивления, а следовательно, изменяет дальность падения снаряда (плотность воздуха в наземной артиллерии учитывается через температуру воздуха и наземное давление). Вплоть до начала XX в. (а зачастую и сейчас) при подготовке к стрельбе использовался способ пристрелки, при котором не учитывались параметры атмосферы. Однако такой способ не обеспечивает скрытности огневых позиций, обуславливает повышенный расход боеприпасов, а также не применим при отсутствии видимости. Поэтому основным считается способ полной подготовки стрельбы, требующий, помимо других факторов (топографических и баллистических), учитывать параметры атмосферы.
Как известно, артиллерийские таблицы стрельбы составлены для нормальных атмосферных условий 2* . Задача метеорологической подготовки – определение отклонений метеорологических условий от нормальных (табличных), необходимых для расчета установок для стрельбы. Считается, что ошибки метеоподготовки вносят основной вклад в погрешности стрельбы. Не учет метеопараметров может привести к ухудшению точности стрельбы по дальности и направлению, достигающую тысячу метров и более. Особенно сильное влияние оказывает ветер на полет реактивного снаряда на активном участке траектории (это обусловлено особенностями баллистики реактивных снарядов).
2
* «Нормальные атмосферные условия" рассчитаны и предложены советским ученым Д. А. Вентцелемв 1927 г.
Мачта десантного метеокомплекта с датчиками ветра, температуры и влажности.
С развитием артиллерии и необходимостью повышения эффективности стрельбы перед учеными-артиллеристами встала задача учета метеопараметров при подготовке стрельбы. Для этого необходимо измерять метеопараметры в слое атмосферы, включающем траекторию снаряда. На заре развития аэрологии применялись различные методы измерения, в том числе и достаточно экзотические, например, с помощью воздушных змеев и аэростатов с установленной регистрирующей аппаратурой.
Для регистрации метеопараметров на воздушный змей устанавливались самописцы, регистрирующие температуру воздуха и скорость ветра (с помощью флюгарки) на бумажную ленту. Высота змея определялась приближенно, по длине троса и углу его наклона по отношению к горизонту. В процессе подъема змея фиксировалось текущее время и длина троса (с целью обеспечения возможности сопоставления высоты и метеопараметров). После подъема на максимальную высоту змей с помощью троса спускался на землю и производилась дешифровка метеоинформации и сопоставление ее с высотой. Направление ветра определялось по направлению троса.
При использовании аэростата в гондолу помещался метеонаблюдатель, который через определенные промежутки времени производил измерения температуры воздуха (с помощью термометра) и скорости ветра (с помощью анемометра) и передавал эти значения по телефону на наземный пункт.
Направление ветра определялось по направлению троса аэростата.
Точность измерения метеопараметров при использовании данных методов оказалась невысока. Высота подъема змея и аэростата не превышала нескольких сот метров, что было явно недостаточно при стрельбе дальнобойной артиллерией. Но самое главное – при ведении боевых действий существовала вероятность обстрела противником аэростата, что подвергало метеонаблюдателя опасности. В результате широкого распространения данные методы не получили.
Для проведения комплексного (температурно-ветрового) высотного зондирования атмосферы в 1930 г. в СССР профессор П.А. Молчанов разработал метеорологический радиозонд, который прикреплялся с помощью шнура к резиновой оболочке, наполненной легким газом (водородом), и выпускался в свободный полет. В процессе подъема радиозонд измерял температуру воздуха и передавал с помощью радиопередатчика телеметрическую информацию с помощью азбуки Морзе в эфир. Сигналы принимались оператором с помощью радиоприемника на слух, записывались вручную на бумаге, затем раскодировались и пересчитывались в температуру. Ветер определялся измерением положения шара (вертикального и горизонтального углов) в пространстве в определенные моменты времени с помощью двух теодолитов, размещенных на известном расстоянии. Измеренные углы и известное расстояние (база) между теодолитами на основе теоремы синусов пересчитывались в высоту подъема шара и ветровые характеристики. Затем рассчитанные метеопараметры сопоставлялись с высотой. При использовании данного способа значительно упростилась организация зондирования и повысилась точность метеоизмерений, поэтому он применялся в годы Великой Отечественной войны 3* , а также вплоть до 1950-х гг. Высота зондирования составляла 2-3 км.
3
* Большую роль сыграло метеообеспечение стрельбы артиллерии при прорыве блокады Ленинграда. Сплошная облачность, характерная для зимних месяцев, делала невозможным проведение зондирования теодолитным способом. Однако артиллерийские метеорологи дожидались редких ясных дней, проводили зондирование и передавали метеоданные в артиллерийские подразделения. Это позволяло на основе полной подготовки производить внезапную стрельбу (без пристрелки).
Тем не менее, данный способ требовал от операторов высокой квалификации, являлся трудоемким и дорогостоящим (вследствие высокой стоимости радиозонда). Кроме того, оптический метод (использование теодолитов) обуславливал малую высоту зондирования (2-3 км), а при плохой видимости данный способ вообще был неприменим.
Основным недостатком теодолитного способа измерения ветра, ограничивающим область его применения, являлось обязательное условие оптической видимости. Поэтому в 1950-х гг. для зондирования атмосферы применялась радиолокационная станция (РЛС) орудийной наводки СОН-2 метрового диапазона длин волн.
К оболочке, наполненной водородом, подвязывался уголковый отражатель и радиозонд. РЛС измеряла сферические координаты уголкового отражателя (т.е. его азимут, угол места и наклонную дальность), а радиозонд определял и передавал на наземную станцию информацию о температуре воздуха азбукой Морзе. Сферические координаты радиозонда снимались операторами РЛС с приборных шкал и фиксировались вручную. Сигналы от радиозонда принимались оператором с помощью радиоприемника на слух и записывались на бумаге. Путем совместной обработки координатной и телеметрической информации, а также учитывая значение наземного давления атмосферы, рассчитывался метеобюллетень, содержащий данные о состоянии атмосферы. Так же как и при использовании теодолитного способа, оператор должен был иметь высокую квалификацию, чтобы записывать на слух метеоинформацию, не допуская ошибок. Ручная запись координат обуславливала трудоемкость способа, а также вносила вероятность ошибок.