Тени разума. В поисках науки о сознании
Шрифт:
Через несколько лет после опубликования работы Белла был предложен {63} и впоследствии проведен {64} ряд натурных экспериментов. Кульминационным стал знаменитый парижский эксперимент Алена Аспекта (совместно с группой коллег, 1981), в рамках которого исследовалось поведение фотонов, образующих «сцепленную» пару(см. §5.17 ): фотоны излучались в противоположных направлениях и улавливались детекторами, разнесенными на расстояние приблизительно 12 метров. Эксперимент блестяще оправдал возложенные на него надежды, установив физическую реальность Z– загадок ЭПР-типа (в полном соответствии с предсказанием стандартной квантовой теории) — и нарушив все, какие только можно, неравенства Белла (рис. 5.6 ).
Рис. 5.6. ЭПР-эксперимент Алена Аспекта и его коллег. Пары фотонов в сцепленном состоянии испускаются из источника. Решение о том, с какой стороны от источника измерять поляризацию фотона, принимается
Следует, впрочем, упомянуть, что несмотря на весьма хорошее согласие между результатами эксперимента Аспекта и предсказаниями квантовой теории, до сих пор есть еще физики, отнюдь не считающие, что эти результаты как-то подтверждают существование феномена квантовой нелокальности. Они указывают на то, что детекторы фотонов в эксперименте Аспекта (и в прочих подобных опытах) не обладали достаточной чувствительностью, вследствие чего большую часть испущенных пар фотонов экспериментаторы в конечном итоге просто упустили. Последующая аргументация неизбежно приводит к следующему: если чувствительность детекторов повысить до некоторой пороговой степени, то пресловутое превосходное согласие между результатами наблюдений и предсказаниями квантовой теории рассеется как дым, немедленно восстановив в правах все те соотношения, которые, согласно Беллу, должны выполняться в любой локальной классической системе. Мне представляется крайне маловероятным, что то практически идеальное согласие квантовой теории и эксперимента, которое демонстрирует эксперимент Аспекта (см. рис. 5.7 ), окажется вдруг артефактом — более того, следствием недостаточной чувствительностидетекторов. Еще менее правдоподобным выглядит предположение о том, что более совершенные детекторы каким-то образом это согласие ослабят — причем ослабят до такой степени, что можно будет говорить о справедливости в данном случае неравенств Белла {65} .
Рис. 5.7. Результаты эксперимента Аспекта очень хорошо согласуются с предсказаниями квантовой теории — и совершенно не вписываются в классические неравенства Белла. Неясно, каким образом более совершенные детекторы могут этому согласию помешать.
Первоначально Белл получил соотношения между совместными вероятностямиразличных возможных событий (неравенства Белла). Для того чтобы оценить действительные вероятности событий в рамках того или иного физического эксперимента, необходимо прежде накопить достаточный объем результатов наблюдений, а затем подвергнуть их соответствующему статистическому анализу. Не так давно был предложен ряд альтернативных проектов экспериментов (гипотетического характера), построенных исключительно на принципе «да/нет» и не нуждающихся в каком бы то ни было учете вероятностей. Первый из этих недавних проектов, разработанный в 1989 году Гринбергером, Хорном и Цайлингером [ 170 ], включает в себя измерение спина на частицах со спином 1/2 в трехотдаленных друг от друга точках (скажем, на Земле, на альфе Центавра и на Сириусе — на случай, если этим проектом вдруг заинтересуются «Квинтэссенциальные Товары»). Ранее (в 1967 году) очень похожую идею выдвинули Кохен и Спекер [ 225 ], только они предполагали использовать частицы со спином 1 и чрезвычайно сложные геометрические конфигурации; да и сам Белл еще в 1966 году также работал над чем-то подобным, хотя и не столь конкретным [ 21 ]. (Эти ранние исследования, разумеется, не формулировались сразу в терминах ЭПР-феноменов; соответствующая переформулировка была предложена в 1983 году Хейвудом и Редхедом [ 197 ], см. также [ 358 ] {66} .) Приведенный выше пример с додекаэдрами хорош тем, что его геометрия весьма проста и легко представима визуально {67} . (Предлагались также эксперименты для изучения феноменов, эквивалентных уже упомянутым примерам Z– загадок, но иных физически; [ 394 ].)
5.5. Фундамент квантовой теории: исторический экскурс
Каковы же фундаментальные принципы квантовой механики? Прежде чем мы перейдем непосредственно к поискам ответа на этот вопрос, я хотел бы пригласить читателя на небольшую историческую экскурсию с целью проследить происхождение двух важнейших математических ингредиентов современной квантовой теории. При этом выяснятся совершенно замечательные (и малоизвестные широкой публике) вещи: во-первых, оба этих ингредиента появились, причем независимо друг от друга, еще в XVI веке, а во-вторых, придумал их один и тот же человек!
Человек этот. Джероламо Кардано (рис. 5.8 ), родился 24 сентября 1501 года в итальянском городе Павия, стал, помимо прочего, лучшим и известнейшим врачом своего времени и умер 20 сентября 1576 года в Риме. Несмотря на то. что его жизнь представляет собой один сплошной скандал (начиная с того, что союз его родителей не был освящен церковью, и заканчивая арестом и заключением в тюрьму уже самого Кардано на закате его жизни), он был человеком выдающегося ума и личных качеств, о чем, к сожалению, сегодня мало кому известно. Надеюсь, читатель простит меня, если я ненадолго отвлекусь от собственно квантовой механики и коротко расскажу об этом неординарном человеке.
Рис. 5.8. Джероламо Кардано (1501-1576). Выдающийся врач, изобретатель, игрок, писатель и математик. Первооткрыватель комплексных чисел и теории вероятности — фундаментальных составляющих современной квантовой теории.
В самом деле, в квантовой механике он совершенно неизвестен — зато его имя (все лучше, чем ничего) хорошо знакомо автомеханикам. Карданным валомназывается универсальное устройство, соединяющее коробку передач автомобиля с его задними колесами и обеспечивающее гибкость, необходимую для поглощения переменного вертикального движения подрессоренной задней оси. Прототип этого изобретения Кардано создал приблизительно в 1545
Какое же отношение все эти впечатляющие достижения имеют к квантовой теории? Совершенно никакого, разве что демонстрируют широту ума человека, которому мы фактически обязаны открытием двух наиболее фундаментальных составляющих этой самой теории, причем открытия эти никак одно с другим не связаны. Кардано был выдающимся врачом и выдающимся изобретателем, однако этими областями деятельности он не ограничивался — он был еще и выдающимся математиком.
Первая из упомянутых составляющих — теория вероятностей. Как известно, квантовая теория является теорией скорее вероятностной, нежели детерминистской. Сами ее правила фундаментально обусловлены вероятностными законами. В 1524 году Кардано написал свою «Книгу об азартных играх» (« Liber de Ludo Aleae»), где заложил основы математической теории вероятностей. Описанные в книге законы Кардано сформулировал несколькими годами ранее и не преминул ими воспользоваться. Применение свежеоткрытых законов на практике (а вот и выдающийсяигрок!) принесло ему достаточно денег для того, чтобы заплатить за обучение в медицинской школе в Павии. По всей видимости, Кардано с самых юных лет знал, что зарабатывать деньги шулерством— занятие весьма рискованное, поскольку именно в результате подобной деятельности был убит бывший муж его матери. Джероламо же обнаружил, что, используя открытые им законы, управляющие самим случаем, выигрывать можно вполне честно.
Вторая фундаментальная составляющая квантовой теории, открытая Кардано, — понятие комплексного числа. Комплексным называется число вида
a + ib,
где под iпонимается квадратный корень из минус единицы,
i= -1
а aи bсуть обычные вещественные числа (т.е. числа, которые можно представить в виде десятичных дробей). Сегодня мы называем число a вещественнойчастью комплексного числа a+ ib, а число b— его мнимойчастью. На эти странные числа Кардано наткнулся, пытаясь отыскать способ решения общего кубического уравнения. Кубическими называются уравнения вида
Ax 3+ Bx 2+ Cx+ D= 0,
где A, B, Cи D— некоторые заданные вещественные числа, а уравнение следует решать относительно x. В 1545 году Кардано опубликовал трактат под названием « Ars magna» [34] , где и привел первый полный анализ решения таких уравнений.
34
«Великое искусство» (лат.) — Прим. перев.
С публикацией этого решения связана пренеприятнейшая история. Еще в 1539 году учитель математики Николо Фонтана, более известный по прозвищу Тарталья (что в переводе с итальянского означает «заика»), отыскал общее решение для некоторого широкого класса кубических уравнений. Тогда же Кардано подослал к нему одного своего приятеля, чтобы тот выведал у Тартальи, как выглядит это решение. Тарталья, однако, не пожелал о нем говорить, вследствие чего Кардано засел за работу и вскоре обнаружил искомое решение самостоятельно, опубликовав результат в 1540 году в своей книге «Практическая арифметика и простые измерения». Более того, Кардано удалось распространить свое решение на всевозможные случаи; позднее Кардано описал этот общий аналитический метод решения в « Ars magna». В обеих книгах Кардано указывал на первенство Тартальи в отыскании решения для того класса случаев, где это решение применимо, однако в « Ars magna» он допустил ошибку, утверждая, что Тарталья дал ему разрешение на публикацию. Узнав об этом, Тарталья пришел в ярость и заявил, что он сам однажды рассказал Кардано (будучи у него в доме по какому-то делу) о своем решении, взяв с хозяина клятву, что тот никому и ни при каких обстоятельствах это решение не откроет. Как бы то ни было, Кардано оказался в непростой ситуации: публикуя свое решение, обобщающее ранее полученное решение Тартальи, он тем самым неизбежно раскрывал «тайну» этого частного случая. Единственным выходом, по всей видимости, было бы полное замалчивание уже полученных результатов и прекращение каких бы то ни было исследований в этой области — и вряд ли Кардано пошел бы на такое. Тарталья, однако, затаил на Кардано обиду и выжидал вплоть до 1570 года. Именно тогда, воспользовавшись тем, что репутация Кардано оказалась серьезно подмочена в силу других скандальных обстоятельств, Тарталья и нанес завершающий удар, приведший в конечном итоге к унижению и смерти Кардано. В тесном сотрудничестве с Инквизицией Тарталья собрал огромную коллекцию всевозможных улик против Кардано и лично организовал его арест и заключение под стражу. Освободили Кардано только в 1571 году, после того, как в Рим прибыл особый посланник от архиепископа Шотландского (которого, как мы помним, Кардано вылечил от астмы) с прошением об освобождении узника — «ученого, пекущегося лишь о сохранении и исцелении тел, дабы души Господни проживали в них весь отпущенный им срок».