Тени разума. В поисках науки о сознании
Шрифт:
В момент, непосредственно предшествующий столкновению фотона (или, точнее, | -части волновой функции фотона) с детектором, физическое состояние системы объединяет в себе состояние детектора и состояние фотона, т.е. имеет вид |Ф)(| + | ), а нам известно, что
| (| + | ) = | | + | | .
Таким образом, мы имеем дело с суперпозицией состояния | | , описывающего детектор (элементы детектора) и приближающийся к нему фотон, и состояния | | , описывающего детектор (элементы детектора) и фотон, находящийся где-то в другом месте. Предположим далее, что состояние | | (детектор с приближающимся к нему фотоном) переходит, согласно шрёдингеровой эволюции U, в некоторое новое состояние | Д (детектор
| Д + | Н| '.
Перед нами типичный пример сцепленногосостояния: термин «сцепленность» в данном случае отражает тот факт, что общее состояние системы невозможно записать просто в виде произведениясостояния одной из ее подсистем (фотона) на состояние другой подсистемы (детектора). Более того, состояние | Д и само, по всей вероятности, является сцепленным (по меньшей мере, с состояниями элементов собственного окружения), однако подтверждение этой сцепленности требует детального исследования соответствующих взаимодействий, не имеющих к теме нашего разговора никакого отношения.
Отметим, что состояния | | и | | , суперпозицией которых представлено состояние совокупной системы непосредственно перед столкновением, (существенно) ортогональны— поскольку ортогональны состояния | и | , а | никак не зависит ни от того, ни от другого. Таким образом, ортогональными должны быть и состояния, в которые они эволюционируют под действием U, — | Д и | Н| '. (Эволюция Uвсегда сохраняет ортогональность.) Состояние | Д может в дальнейшем эволюционировать в нечто, наблюдаемое на макроскопическом уровне, — например, в слышимый человеческим ухом щелчок, указывающий на то, что фотон действительно был зарегистрирован. Если же никакого щелчка мы не услышали, то это надо понимать так, что система находится в ортогональном альтернативном состоянии | Н| ' (или только что в него «перескочила»). Одна лишь контрфактуальная возможность — щелчок могпрозвучать, но не прозвучал — вызывает «скачок» состояния из суперпозиции в состояние | Н| ', причем новое состояние уже не является сцепленным. Его расцепило нулевое измерение.
Характерной особенностью сцепленных состояний является то, что «скачок», сопровождающий процедуру R, может в данном случае иметь, на первый взгляд, нелокальное (или даже явно ретроактивное) действие, еще более удивительное, чем результат простого нулевого измерения. Такая нелокальность, в частности, имеет место в так называемых ЭПР-эффектах (или феноменах Эйнштейна—Подольского—Розена). Эти эффекты — подлинные квантовые чудеса — можно отнести к наиболее непостижимым Z– загадкам квантовой теории. Идею подобного парадокса первоначально выдвинул Эйнштейн, желая показать, что формализм квантовой теории не в состоянии дать исчерпывающее описание Вселенной. Впоследствии было предложено множество различных вариантов ЭПР-феноменов (например, магические додекаэдры из §5.3 ), причем некоторые из них получили прямое экспериментальное подтверждение, т.е. оказались неотъемлемой частью действительногоустройства мира, в котором мы живем (см. §5.4 ).
ЭПР-эффекты возникают в следующего рода ситуациях. Рассмотрим известное начальное
| | + | | .
Допустим, состояния | и | — это ортогональные альтернативы для одного компонента системы, а | и | — ортогональные альтернативы для другого компонента. Измерение, устанавливающее в каком из состояний, | или | , находится первый компонент, тем самым немедленно определяет и соответствующее состояние (| или | ) второго компонента.
Пока, кажется, ничего сверхъестественного. Кто-то может даже предположить, что нечто очень похожее мы могли наблюдать в случае с добрым доктором Бертлманом и его носками ( §5.4 ). Коль скоро нам известно, что носки доктора должны быть разного цвета, — и кроме того, мы выяснили, что сегодня он остановил свой выбор, скажем, на зеленом и розовом, — то наблюдение, устанавливающее, что левый носок доктора зеленый (состояние | ) или же розовый (состояние | ), немедленно определяет цвет его правого носка — соответственно, розового (состояние | ) или зеленого (состояние | ). Как бы то ни было, эффекты квантовой сцепленности могут фундаментально отличаться от вышеописанного, и никакая «бертлмано-носочная» трактовка не в состоянии объяснить все наблюдаемые результаты. Серьезные проблемы начинаются тогда, когда компоненты системы могут быть измерены несколькими альтернативнымиспособами.
Проиллюстрируем сказанное примером. Предположим, что начальное состояние | 0 описывает спиновое состояние некоторой частицы как спин 0. Частица затем распадается на две новые частицы (каждая со спином 1/2), которые разлетаются в разные стороны (скажем, влево и вправо), удаляясь на значительное расстояние друг от друга. Из свойств кинетического момента и из закона его сохранения следует, что спины образовавшихся при распаде частиц должны быть ориентированы в противоположном направлении; таким образом, состояние нулевого спина, в которое эволюционирует | 0, имеет вид
| = | L^| RV - | LV| R^,
где « L» обозначает частицу, движущуюся влево, a « R» — частицу, движущуюся вправо (знак «минус» появляется согласно стандартному правилу). Допустим, мы решаем провести измерение спина левой частицы на предмет направленности его оси «вверх». Тогда ответ ДА(т.е. обнаружение состояния | L^) автоматически поместит правую частицу в состояние | RV («спин вниз»). Ответ НЕТ(| LV) автоматически помещает правую частицу в состояние «спин вверх» (| R^). Похоже, что измерение частицы «здесь» способно мгновенно повлиять на состояние частицы «там» (причем это «там» может быть очень далеко отсюда) — что, впрочем, ничуть не более удивительно, чем все те же «бертлмановские носки»!
Однако это сцепленное состояние можно представить и иначе, для этого нужно всего лишь выполнить другое измерение. Например, мы могли бы выбрать при измерении спина левой частицы другое направление — не вертикальное, а горизонтальное, т.е. ответ ДАсоответствовал бы состоянию, скажем, | L<-, а ответ НЕТ— состоянию | L– >. Путем простого вычисления (см. НРК, с. 283) находим, что то жесовокупное состояние | можно записать иначе:
| = | L<-| R– >– | L– >| R<-.
Таким образом, ответ ДАпри измерении левой частицы автоматически помещает правую частицу в состояние | R– >, а ответ НЕТ— в состояние | R<-. Какое бы направлениедля измерения спина левой частицы мы ни выбрали, мы получим соответствующий, отличный от прочих, результат.