Чтение онлайн

на главную

Жанры

Тени разума. В поисках науки о сознании
Шрифт:

|^^^…^, |V^^…^, |VV^…^, …, |VVV…V,

что соответствует значениям n, n– 2, n– 4, …, 2 - n, — nдоли спина, ориентированного в этом направлении (запись каждого состояния содержит ровно nстрелок). Результаты можно интерпретировать так: каждая стрелка вверх дает долю 1/2 hспина, ориентированного вверх, а каждая стрелка вниз дает долю 1/2 hспина, ориентированного вниз. Складывая эти величины, мы получаем полный спин для каждого конкретного случая измерения с помощью установки Штерна—Герлаха (при ориентации осей в направлении вверх/вниз).

Рис. 5.20. Измерение спина с помощью установки Штерна—Герлаха. Для частицы со спином 1/2 nмы

можем получить n+1 возможных результатов, в зависимости от того, какая «доля» спина ориентирована в выбранном направлении.

В общем случае суперпозиция этих состояний записывается в виде комплексной комбинации

z 0|^^^…^ + z 1|V^^…^ + z 2|VV^…^ + … + z n|VVV…V,

где хотя бы один из комплексных коэффициентов z 0, z 1, z 2, …, z nне равен нулю. Можно ли представить такое состояние с помощью отдельных направлений оси спина, отличных от элементарных «вверх» или «вниз»? Как показал Майорана, такое представление действительно возможно, однако следует допустить, что направления эти будут вполне независимы друг от друга: нет никакой необходимости брать в качестве исходных обязательно пару обязательно противоположных направлений (как в случае измерения с помощью установки Штерна—Герлаха). Иными словами, общее состояние спина 1/2 nмы представим в виде набора из nнезависимых «стрелок-направлений»; эти направления можно рассматривать как направления, задаваемые nточками на сфере Римана, — при этом каждая «стрелка» исходит из начала координат и заканчивается в соответствующей точке на сфере (см. рис. 5.21 ). Важно помнить, что мы имеем дело с неупорядоченнойсовокупностью точек (или направлений), и, следовательно, в порядок их рассмотрения никакого особого смысла вкладывать не нужно.

Рис. 5.21. Майорана описывает общее состояние спина 1/2 nкак неупорядоченную совокупность из n точек P 1, P 2, …, P nна сфере Римана, причем каждая точка соответствует «элементарному» спину 1/2, направление оси которого совпадает с направлением от начала координат к этой самой точке.

Получившаяся картина выглядит очень странно — если мы попытаемся подойти к квантовомеханическому спину с теми же мерками, что и к привычной концепции вращения на классическом уровне. Вращение классического объекта (например, бильярдного шара) всегда происходит вокруг некоторой вполне определенной оси, тогда как объекту квантового уровня позволено, судя по всему, вращаться одновременно вокруг множества осей, ориентированных в самых разных направлениях. Полагая, что квантовые объекты — это, в сущности, те же классические объекты, только «маленькие», мы неизбежно сталкиваемся с парадоксом. Чем больше величина спина, тем большее количество направлений осей необходимо для описания его состояния. Почему же, в таком случае, классические объекты не вращаются вокруг нескольких осей одновременно? Перед нами типичный пример квантовой X– загадки. Что-то вмешивается в процесс (на некоем неустановленном уровне), и мы обнаруживаем, что большинство типов квантовых состояний на классическом уровне феноменов — т.е. там, где мы могли бы их воспринимать, — не возникают вовсе (или, по меньше мере, почти никогда). В случае спина мы видим, что на классическом уровне сохраняются только те состояния, в которых оси преимущественно группируются в каком-то одном направлении — в направлении оси вращения классического вращающегося объекта.

В квантовой теории есть одно занимательное допущение, называемое «принципом соответствия». Суть этого принципа такова: как только какая-либо физическая величина (например, величина спина) возрастает до некоего предела, становится возможнымтакое поведение системы, которое очень близко аппроксимирует классическое поведение (как, например, спиновое состояние, где направления всех осей приблизительно одинаковы). Однако нигде почему-то не объясняется, каким образом к подобным состояниям приводит одна лишь шрёдингерова эволюция U. В действительности «классические состояния» такне возникают почти никогда. Состояния классического типа являются результатом действия совершенно иной процедуры — редукции Rвектора состояния.

5.11. Местонахождение частицы и ее количество движения

Еще более наглядным примером такого рода является квантовомеханическая концепция положениячастицы в пространстве. Выше мы говорили о том, что

состояние частицы может включать в себя суперпозицию двух или более различных ее положений. (Вспомним также и о примерах из §5.7 , где после прохождения полупрозрачного зеркала фотон оказывается в состоянии, предполагающем его нахождение в двух различных лучах одновременно.) Такие суперпозиции возможны и в случае любых других типов частиц (как простых, так и составных) — электронов, протонов, атомов или молекул. Более того, в части Uформализма квантовой теории нет ничего, что запрещало бы оказаться в двусмысленном состоянии суперпозиции положений макроскопическим объектам вроде бильярдных шаров. Однако никто ни разу не видел бильярдный шар в состоянии суперпозиции нескольких положений одновременно, равно как никто не видел и бильярдный шар, вращающийся одновременно вокруг нескольких осей. Почему получается так, что некоторые физические объекты оказываются слишком большими, или слишком массивными, или слишком какими-то еще для того, чтобы «протиснуться» на квантовый уровень, вследствие чего не могут в реальном мире находиться в какой бы то ни было суперпозиции состояний? В стандартной квантовой теории переход от квантовых суперпозиций возможных альтернатив к единственному действительному классическому результату осуществляется исключительно благодаря действию процедуры R. Действие же одной лишь процедуры Uпрактически неизбежно приводит к таким классическим суперпозициям, которые выглядят, мягко говоря, «неестественно». (К этому вопросу я еще вернусь в §6.1 .)

На квантовом же уровне те состояния частицы, в которых она не имеет четко определенного положения, могут играть, ни много ни мало, фундаментальную роль: если частица обладает определенным количеством движения(т.е. движется по некоторой определенной траектории в определенном направлении, а не в суперпозиции нескольких разных направлений одновременно), то в состоянии этой частицы непременно должна присутствовать суперпозиция всех ее различных положенийодновременно. (Это одно из свойств уравнения Шрёдингера, и для должного объяснения этого свойства потребовалось бы слишком далеко углубиться в технические детали, что нам сейчас совсем не нужно; см., например, НРК, с. 243-250, а также [ 94 ] и [ 70 ]. Оно, кроме того, тесно связано с принципом неопределенностиГейзенберга, устанавливающим предел точности для одновременного измерения положения частицы и ее количества движения.) Более того, в состояниях с определенным количеством движения частицы демонстрируют колебательное (в направлении движения) пространственное поведение, чего при обсуждении состояний фотонов в §5.7 мы не учитывали. Строго говоря, термин «колебательное» здесь не совсем подходит. Как выясняется, упомянутые «колебания» отнюдь не похожи на колебания, скажем, струны — комплексные весовые коэффициенты не «мечутся» взад и вперед сквозь начало координат на комплексной плоскости, но, будучи чистыми фазами (см. рис. 5.18 ), движутся вокруг начала координат с постоянной скоростью, причем эта самая скорость задает частоту v, пропорциональную энергии Eчастицы в соответствии со знаменитой формулой Планка E= hv. (Графическое представление состояний количества движения в виде этакого «штопора» можно найти в НРК, рис. 6.11.) Все эти вещи, хоть они и важны для квантовой теории, в наших дальнейших рассуждениях особой роли не играют, поэтому читатель вполне может обойтись и без детального их изучения.

В общем случае комплексные весовые коэффициенты вовсе не обязательно должны иметь именно такой «колебательный» вид, они могут изменяться от точки к точке произвольным образом. Весовые коэффициенты задают комплексную функцию положения, которая называется волновой функцией частицы.

5.12. Гильбертово пространство

Чтобы более внятно (и более точно) рассказать о том, как работает процедура Rв стандартных квантовомеханических описаниях, необходимо перейти на несколько (совсем немного) более высокий уровень математической абстракции. Семейство всех возможных состояний квантовой системы образует так называемое гильбертово пространство. Нужды объяснять значение этого термина во всех математических тонкостях у нас в данный момент нет, однако некоторое представление о нем все же получить стоит — это поможет нам прояснить существующую картину квантового мира.

Первая и наиболее важная особенность, на которую следует обратить внимание: гильбертово пространство является комплексным векторным пространством. Это, в сущности, означает, что здесь мы вправе выполнять действия с комплексно-взвешенными комбинациями, посредством которых описываются квантовые состояния. Для обозначения элементов гильбертова пространства я продолжу использовать диракову скобку «кет», т.е. если состояния | и | являются элементами гильбертова пространства, то таким же его элементом является и состояние w| + z| , где wи z— любая пара комплексных чисел. Допускается даже комбинация w= z= 0, она дает элемент 0гильбертова пространства — единственный элемент, не соответствующий никакому возможному физическому состоянию. Как и в любом другом векторном пространстве здесь действуют самые обыкновенные алгебраические правила:

Поделиться:
Популярные книги

Аморальные уроки

Дюран Хельга
Любовные романы:
современные любовные романы
эро литература
6.00
рейтинг книги
Аморальные уроки

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Первый среди равных. Книга V

Бор Жорж
5. Первый среди Равных
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Первый среди равных. Книга V

Барон ненавидит правила

Ренгач Евгений
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон ненавидит правила

Магнатъ

Кулаков Алексей Иванович
4. Александр Агренев
Приключения:
исторические приключения
8.83
рейтинг книги
Магнатъ

Отмороженный 4.0

Гарцевич Евгений Александрович
4. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 4.0

Земная жена на экспорт

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Земная жена на экспорт

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Камень Книга двенадцатая

Минин Станислав
12. Камень
Фантастика:
боевая фантастика
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Камень Книга двенадцатая

Отморозок 1

Поповский Андрей Владимирович
1. Отморозок
Фантастика:
попаданцы
5.00
рейтинг книги
Отморозок 1

Звезда Чёрного Дракона

Джейн Анна
2. Нежеланная невеста
Любовные романы:
любовно-фантастические романы
4.40
рейтинг книги
Звезда Чёрного Дракона

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Сам себе властелин 4

Горбов Александр Михайлович
4. Сам себе властелин
Фантастика:
фэнтези
юмористическая фантастика
попаданцы
6.09
рейтинг книги
Сам себе властелин 4