Том 19. Ипотека и уравнения. Математика в экономике
Шрифт:
Число 5 появилось, когда первобытный человек начал считать, используя пальцы рук, — точно так же, как это делают современные дети. Некоторые народы, например майя, считали на пальцах рук и ног, поэтому они использовали систему счисления по основанию 20.
Шумеры, египтяне, индийцы, китайцы и майя первыми упорядочили числа и стали использовать системы счисления. Шумеры, жившие на Ближнем Востоке, на территории современного Ирака, около 4000 года до н. э., выполняли сложные арифметические операции и геометрические расчеты, изучая положение звезд на небосводе.
Благодаря их расчетам появился первый календарь. Основанием системы счисления шумеров было число 60, а значения цифр зависели от их
Такая система счисления называется позиционной.
Шумеры писали палочками из заостренного тростника на глиняных табличках, затем обжигали их в печах, и в пустынях Ирака археологи нашли тысячи табличек с математическими расчетами.
< image l:href="#"/>Шумерская глиняная табличка, найденная в районе города Ур, на которой записаны площади земельных участков в городе Умма.
Элементы шумерской системы счисления сохранились до сих пор — они используются при измерении углов и времени. Так, час равен 60 минутам, минута — 60 секундам. Угол в один градус (речь идет о шестидесятеричных градусах, которые на калькуляторах обозначаются символами DEG) делится на 60 частей — минут (60'), каждая из которых делится на 60 секунд (60").
Древние египтяне писали на папирусе, изготовленном из стеблей растения, росшего в долине Нила. Египетские жрецы — ученые той эпохи — сделали множество открытий, связанных с числами. Например, чтобы определить, чему равна третья часть выращенной на поле пшеницы, которую нужно уплатить в качестве дани, или чтобы подсчитать, на сколько частей можно разделить испеченный хлеб, жрецы изобрели дробные числа, или дроби. В 1858 году шотландский египтолог Александер Генри Райнд купил старый папирус, на котором были записаны задачи о дробях и задачи по геометрии. По сути папирус Райн да — первый известный нам учебник математики: он был написан примерно в 1700 году до н. э., и благодаря ему мы можем оценить уровень развития науки в Древнем Египте.
Фрагмент так называемого папируса Райнда — библии египетских математиков.
Папирус имеет 33 сантиметра в ширину и более 5 метров в длину.
Китайцы, в свою очередь, записывали числа не в строки, а в столбцы. Они делили числа на «мужские» и «женские» (нечетные и четные соответственно). Одним из достижений китайских математиков является определение положительных и отрицательных чисел. В Китае в качестве цифр использовались иероглифы, то есть каждый иероглиф, кроме обычного, имел и числовое значение, и это вызывало немало трудностей. Кроме того, китайцы считали, что слова имеют магический смысл, зависящий от того, какое число они обозначают, и приписывали иероглифам всевозможные сверхъестественные свойства.
Майя, жившие в Центральной Америке за много лет до прибытия туда Колумба, также записывали числа в столбцы, а не в строки. Они использовали календарь, в котором месяц состоял из 20 дней, год — из 360 дней, и позиционную систему счисления по основанию 20, а их знаки для обозначения числовых величин были весьма похожи на китайские и индийские.
Майя и их предшественники, ольмеки, совершили множество открытий в математике и астрономии и примерно в 36 году до н. э. дали определение такому понятию, как ноль, или «ничто» (именно этим годом датировано первое письменное упоминание
Китайская система счисления: 8 раз по 10 = 80.
Греческая система счисления: (3 + 5) раз по 10 = 8 раз по 10 = 80.
Система счисления майя: 4 раза по 20 = 80.
Египетская система счисления: 8 раз по 10 = 80.
Римская система счисления: 50 + 10 + 10 + 10 = 80.
Система счисления шумеров: 60 + 10+10 = 80.
Одно и то же число, представленное в шести разных системах счисления.
Самыми умелыми математиками древнего мира были индийцы. В своих арифметических расчетах они использовали огромные величины и решали задачи, требующие невероятного воображения (в одной из них, например, упоминаются 1024 дерущиеся обезьяны).
VI веком н. э. датируются два великих открытия индийских математиков: они стали присваивать цифрам разные значения в зависимости от их позиции в записи (одна и та же цифра в зависимости от позиции обозначала единицы, десятки, сотни или тысячи) и начали обозначать особым знаком, 0, число элементов пустого множества (индийцы называли это число «шунья», арабы — «сефир»). Вначале 0 обозначался просто точкой, потом — точкой, расположенной внутри круга, а затем на смену этим обозначениям пришел круг.
Индийские цифры VI века н. э. записывались так же, как и современные: восемьдесят тысяч триста сорок три
= 80 343
= восемь десятков тысяч, ноль тысяч, три сотни, четыре десятка и три единицы
= 8•104 + 0•103 + 3•102 + 4•101 + 3•100.
Греки, подобно китайцам, использовали в качестве цифр буквы, однако их система счисления не была позиционной, что усложняло запись чисел и развитие алгоритмов вычислений. По этой причине древние греки не очень преуспели в науке о числах — арифметике, однако добились огромных успехов в геометрии.