ВОЛШЕБНЫЙ ДВУРОГ
Шрифт:
Если провести вычисление с большей точностью, то можно обнаружить, что
е = 2,71828 18284 59045 23536 0287471135 26624 99757 54692 80835 55155 05841 72...
Теперь скажи мне: что нужно сделать, если ты захочешь получить вдвое большую площадь, то есть равную двум квадратным единицам?
– Здесь опять все пойдет в геометрической прогрессии, - отвечал Илюша.
– Если нужно перенести единичную площадь направо, откладывая ее не от х=1, а от х=е, то надо все площадочки-неделимые втиснуть в промежуток в е раз более тесный и, следовательно, расширять во столько же раз их основания.
Значит, я дойду до абсциссы е • е = е2.
– Значит, - сказал Радикс, - числа, измеряющие величины гиперболических трапеций в обычной единице меры, будут...
Логарифмами конечных абсцисс при основании е, - отвечал Илюша.
– Так это ведь и есть натуральные логарифмы?
Точки А и В лежат на кругах, но которым вписанные шары соприкасаются с конусом. Ясно, что ВА есть величина постоянная? А ну-ка, докажи это равенство!
F1P + F2P = BP + РА = ВА
Кто сам докажет, того переводим без экзаменов в следующую схолию. F1 и F2– фокусы.
– 371 -
– Вот именно. И заметь, что это рассуждение дает нам в руки способ вычисления этих логарифмов для любых положительных чисел, что далеко не так просто сделать, если искать нужный показатель степени. Потому что вычислять с дробными степенями, как ты сам, вероятно, не раз замечал, не так уж весело. Здесь же можно просто отложить абсциссу, равную числу N, логарифм которого тебе нужен, и измерить площадь гиперболической трапеции от х = 1 до х = N.
– Но это уже будет геометрический способ. А потом как же быть с большими числами?
– На миллиметровой бумаге можно добиться довольно большой точности, а для больших чисел придется уже вычислять. Вспомни, как мы вычисляли площадь, ограниченную дугой параболы. Ты ведь и здесь можешь разбить интересующий тебя участок на большое число частей и вычислить (а не измерять непосредственно) сумму площадей соответствующих тоненьких прямоугольников. Это уже можно сделать с любой степенью точности, то есть той, какая понадобится.
Но есть и более удобные способы вычисления логарифмов.
– А какие же логарифмы применяются на самом деле, -спросил Илюша, - натуральные или какие-нибудь другие?
– Натуральные обладают целым рядом преимуществ перед остальными, и в математическом анализе применяются почти исключительно они. Но в практических вычислениях удобнее иметь дело с десятичными, для которых и составлены таблицы.
А если надо перейти от десятичных к натуральным или наоборот, то пользуются модулем перехода, о котором мы уже говорили. Чтобы получить десятичный логарифм, надо натуральный умножить на
M = 0,43429 44809 032518 276511 289189 1660508 2294397 005803 7675761 1445378 ...
– 372 -
Это число называется модулем десятичных логарифмов.
– А нельзя ли десятичные логарифмы получить тоже как площади гиперболических трапеций?
– Конечно, можно. Перемена основания соответствует, как мы уже видели, просто перемене способа измерения площадей. Если ты в качестве
– А почему обычные логарифмы - десятичные, а не какие-нибудь другие?
– Просто потому, что мы пользуемся десятеричной системой счисления.
Древний халдей, вероятно, выбрал бы для основания не десять, а свое любимое число шестьдесят, если бы он додумался до логарифмов. А в десятеричной системе счисления сразу известны логарифмы чисел 10, 100, 1 000, 10 000 и т. д. Они равны 1, 2, 3, 4... Поэтому, умножая какое-нибудь число на десять, сто и так далее, сразу можно сказать, что десятичный логарифм этого числа увеличится на единицу, на два и прочее, а при делении будет наоборот. Это очень облегчает пользование таблицами.
Илюша помолчал минутку.
– А это что такое?
– спросил доктор У. У. Уникурсальян.
– Вот что, - произнес он наконец, - мне кажется, что теперь я могу разобраться, почему при помощи логарифмов умножение заменяется сложением. Если взять гиперболическую площадку от х = 1 до х = n, то это будет логарифм числа n. Если к нему рядом приладить еще одну площадку величиной от х = 1 до х = m, то есть логарифм числа га, то, как мы уже делали раньше, придется вторую площадку растянуть от n до nm, удлинив абсциссу в m раз. Значит, тут конечные абсциссы (то есть числа) перемножаются, в то время как площади складываются.
– 373 -
Вот теперь мне, кажется, все ясно. Значит, одно из конических сечений имеет самое тесное отношение к прогрессиям. Как все это связано!
– Вот эта связь различных разделов математики друг с другом и есть величайшая драгоценность нашей науки [27] .
– Как интересно!
– воскликнул Илюша.
– А скажи, пожалуйста, когда были открыты логарифмы?
– В начале семнадцатого века Джоном Непером, шотландцем.
– А-а!
– сказал Илюша.
– Вот в чем дело-то! Вот при чем тут шотландский сыр!
27
1 Наш симпатичный читатель поступит дельно, если раздобудет себе небольшую книжечку "Задачи по элементарной математике", составленную группой преподавателей под руководством чл.-корр. АН СССР И. М. Гельфанда (М., "Наука", 1965). Вся эта серия брошюр ("Библиотечка физико-математической школы") очень полезна для юного математика.
– Конечно! Про этого Непера говорили, что он увеличил вдвое продолжительность жизни астронома, потому что с логарифмами можно насчитать вдвое больше, чем без них. Разумеется, нетрудно догадаться, что все, что мы проделали с неделимыми, можно отлично перевести и на современный язык теории пределов, стоит только вместо суммы "неделимых полосок" рассматривать предел суммы бесконечно утончающихся вписанных или описанных прямоугольничков, как мы делали уже в Схолии Пятнадцатой.
– А теперь расскажи еще про гиперболу. Греки определили параболу как геометрическое место. А гиперболу нельзя так определить?