ВОЛШЕБНЫЙ ДВУРОГ
Шрифт:
х2(х - 5) -х (x - 5) + 7 (х - 5) = 0;
(х - 5) (х2 - х + 7) = 0.
Затем ты приравниваешь нулю трехчлен во второй скобке и решаешь квадратное уравнение. Так мы найдем два комплексных корня. А для общего случая есть специальная формула, открытая в шестнадцатом веке итальянским математиком Тарталья, хотя ее чаще называют формулой Кардана, по имени другого математика, современника Тартальи, который ее впервые опубликовал. История этого Тартальи весьма поучительна. В начале шестнадцатого века его родной город Брешиа взяли приступом неприятельские войска. Тарталья, шестилетний мальчик, был найден с разрубленным лицом около бездыханного тела своего отца. Из-за этой раны он так и остался заикой на всю жизнь,
28
1 Об этом подробнее смотри в Схолии Девятнадцатой.
– Как наш Ломоносов!
– Правильно!
– отвечал Радикс.
– Великий был человек Ломоносов. И не зря он выразил уверенность, "что может собственных Платонов и быстрых разумом Невтонов Российская земля рождать".
– А почему он вспоминает Платона?
– Потому что Платон тоже занимался математикой и очень ценил ее. Из его сочинений извлечено теперь много данных о древней науке [29] . Полагают, например, что он дал определение понятию геометрического места. Добавлю, кстати, что кубическая парабола - немаловажная в технике кривая. Например, когда строители железных дорог рассчитывают поворот пути так, чтобы поезд на большой скорости плавно повернул по рельсам, то это закругление нужно рассчитывать именно по кубической параболе.
29
2 В книге Ван-дер-Вардена "Пробуждающаяся наука" в главе VI "Век Платона" много интересного.
– 379 -
– Мне еще хочется узнать про максимумы, - попросил Илюша.
– Это очень трудно - их определить?
– Да нет, - отвечал Радикс, - не так уж трудно. Давай возьмем пример. Допустим, имеется прямоугольник. Какие Надо взять стороны у прямоугольника, чтобы его площадь была наибольшей, если сумма этих двух сторон равна восемнадцати?
– Плохо я что-то понимаю эту задачу!
– заметил Илюша.
– Ты слушай, - отвечал Радикс, - и постепенно уразумеешь. Начнем вот с чего. Пусть наши стороны-множители будут а и b, а их сумма будет с, то есть
а + b = с.
Теперь возьмем квадраты их суммы и разности и вычтем один из другого:
(а + b)2 = а2 + 2ab + b2 – (а - b)2 = а2– 2ab + b2 – ----------------------- (a + b)2– (a - b)2 = 4abТак как (а+b) равно с, то мы можем написать:
с2– (a - b)2 = 4ab,
или так еще:
ab - c2/4 - (а - b)2 / 4
Отсюда ясно, что поскольку с есть величина постоянная, то произведение ab
– Как будто ясно.
– Ну, поехали дальше! Давай назовем игреком искомое произведение. А части его - одна будет икс, а другая...
– А другая будет восемнадцать минус икс, - подсказал Илюша.
– Верно. Следовательно, игрек будет записан так:
y = x(18 - x)
– 380 -
Теперь возьмем разность наших множителей. Назовем ее игрек со штрихом, то есть игрек-штрих:
y' = x - (18 - x)
Так как мы хотим, чтобы этот игрек-штрих стал минимальным, то поищем, чему должен равняться икс, если игрек-штрих станет нулем. И напишем:
х - (18 - х) = 0;
х - 18 + х = 0;
2х = 18; х = 9.
Произведение достигает максимума, когда одна его часть равна девяти, а следовательно, и другая тоже равна девяти. Другими словами, максимальную площадь из всех прямоугольников с одинаковым периметром имеет квадрат. Составим табличку. В третьей графе ее стоит не самая разность, а ее абсолютная величина. Дальше девяти табличку продолжать не стоит: все будет симметрично повторяться в обратном порядке.
Из двух последних столбцов видно, что когда множители равны, то их разность, как и полагается, равна нулю, а произведение их становится наибольшим, то есть достигает максимума.
– Так, - сказал Илюша.
– Действительно, если продолжить табличку и иксу дать значение "десять", то другой множитель будет равен восьми и произведение пойдет на убыль в обратном порядке. Действительно, максимум!
– А теперь давай начертим график нашего уравнения:
у = 18х - x2
– 381 -
Ты видишь, что эта кривая (а это парабола!) как раз проходит через наивысшую точку, когда икс равен девяти. Что означает с геометрической точки зрения то обстоятельство, что для икса, равного девяти, игрек-штрих равен нулю? Дело в том, что игрек-штрих показывает, как меняется угловой коэффициент касательной к параболе. А ты, наверно, помнишь, что этот коэффициент равен тангенсу угла наклона касательной по отношению к положительному направлению оси абсцисс? Ты, наверное, помнишь и то, что когда кривая достигает максимума, то касательная, естественно, располагается...
– Параллельно оси иксов, то есть горизонтально!
– подхватил Илюша.
– Верно! Ну, а теперь скажи мне, какой она в таком случае образует угол с осью абсцисс?
– Никакого угла она не образует!
– Никакого? ..
– переспросил Радикс.
– Таким образом, если тебя кто-нибудь попросит сказать, тепло ли сегодня на улице, то ты посмотришь на градусник за окном, увидишь, нуль градусов, и скажешь, что сегодня никакой температуры не наблюдается. Так я тебя понял?
– Нет, - сказал Илюша, смутившись, - конечно, так сказать нельзя. Тут я должен сказать, что угол этот заключает в себе нуль градусов.
– Как раз!
– отвечал Радикс.
– А теперь ответь мне, чему равен тангенс нуля градусов?
– Нулю, конечно!
– Ну, так вот игрек-штрих и дает этот самый нуль. Вот как производится изыскание максимумов или минимумов! Это одна из самых важных задач в дифференциальном исчислении. Этим делом очень много и плодотворно занимались Ферма и Паскаль. Впрочем, задача, которую мы сейчас разбирали, была решена еще греческим математиком Никомахом во втором веке нашей эры.