Чтение онлайн

на главную

Жанры

Алиса в стране математики
Шрифт:

Вот как были расположены кёнигсбергские мосты:

Может быть, вам удастся их «обойти»? Попробуйте. Но если вам не повезет, не огорчайтесь: ни один житель Кёнигсберга так и не смог этого сделать! А вот если это вам удалось, значит... значит, вы просто ошиблись! Скорее всего, забыли пройти по какому-то мосту или прошли его дважды. Дело в том, что обойти все кёнигсбергские мосты по одному разу невозможно! Сейчас мы докажем это.

Давайте «построим» на обоих берегах реки и на двух островах четыре башни

и соединим их стенами так, чтобы по каждому мосту прошла одна стена. Вот как будет выглядеть наш замок из четырех башен, соединенных семью стенами (стены мы изобразили так, как на географических картах изображают Великую Китайскую стену):

Если можно обойти все семь мостов, пройдя по каждому из них только один раз, то и наш новый замок тоже можно обойти, проходя один раз каждую из семи стен. Однако посмотрите — ни одна из четырёх башен не может быть в середине обхода, потому что в любой башне нашего «кёнигсбергского замка» сходится нечётное число стен! И поэтому обойти его, проходя один раз по каждой стене, невозможно (так же, как и новый королевский замок Королевы Червей). Обойти замок можно только в том случае, когда башен с нечётным числом стен не больше двух — тогда одна из «нечётных» башен должна быть началом обхода, а вторая — его концом. (Если все башни «чётные», то начать обход можно из любой башни. Тогда в этой же башне обход и закончится.)

Задачу о кёнигсбергских мостах первым решил Эйлер в 1736 году. Эйлер был великим математиком и поэтому не ограничился только кёнигсбергскими мостами — он решил задачу в общем виде, то есть для любого числа мостов, которые как угодно соединяют берега и любое число островов! И теперь даже житель Санкт-Петербурга может определить, удастся ли ему прогуляться по трёмстам мостам своего города, соединяющим сорок два острова, причём прогуляться так, чтобы пройти по каждому мосту только один раз.

Мы не случайно вспомнили о Санкт-Петербурге: в этом городе Эйлер провёл большую часть жизни, здесь же написал он и свою знаменитую работу о кёнигсбергских мостах. Работы Эйлера рождали порой новые области математики. Так произошло и с работой о кёнигсбергских мостах: с неё берёт начало топология — раздел математики, в котором изучаются самые общие свойства геометрических тел и фигур.

Что это за свойства? Представим себе, что у нас в руках кусок пластилина, и нам разрешается делать с ним, что угодно, но только не разрывать и не слеплять.

Пусть, например, кусок пластилина имеет сначала форму стакана. Мы можем превратить «стакан» в «ложку», нигде не разрывая и не слепляя пластилин:

А вот превратить пластилиновый стакан в чашку с ручкой не удастся: ведь для ручки надо сделать дырку, то есть разорвать пластилин в каком-то месте, а мы условились, что разрывать и слеплять нельзя! Зато пластилиновую чашку можно превратить в бублик:

С точки зрения топологии стакан и ложка — это одно и то же, а чашка или бублик — совсем другое (однако чашка и бублик — тоже одно и то же!).

Далеко не всегда очевидно, что две фигуры «топологически одинаковы» — например, трудно поверить, что одну из этих пластилиновых «ручек» можно без разрывов и склеек превратить в другую, не снимая со стержня:

Однако вот промежуточные стадии такого превращения:

Задачи о кёнигсбергских мостах и о новом королевском замке — это настоящие топологические задачи: действительно, можно как угодно размещать башни и соединять их стенами любой формы, но пока мы не «разрываем» стен и не «склеиваем» их, задача остаётся той же самой!

Некоторые фигуры имеют настолько необычные топологические свойства, что перестаёшь верить собственным глазам. Одну из таких фигур обнаружил в середине XIX века немецкий учёный Мёбиус. Вы легко можете сами сделать «лист Мёбиуса» — возьмите полоску бумаги и склейте её в кольцо, повернув перед склеиванием на пол-оборота:

Чтобы убедиться в необычных свойствах листа Мёбиуса, попробуйте для начала покрасить его с одной стороны. Вы обнаружите, что карандаш или кисточка окрасят лист полностью! Но так и должно быть — дело в том, что у листа Мёбиуса, в отличие от «обычных» поверхностей (то есть таких, к которым мы привыкли), не две стороны, а только одна!

А теперь попробуйте угадать, что получится, если разрезать лист Мёбиуса вдоль кольца посередине. Распадется ли он, например, на два кольца? Берите ножницы и режьте! Интересно, поверите ли вы своим глазам?

НЕБЫЛИЦА ОБ ЭЙЛЕРЕ, КОТОРЫЙ РАЗГАДАЛ ЗАГАДКУ КЁНИГСБЕРГСКИХ МОСТОВ, ГУЛЯЯ ПО ПЕТЕРБУРГСКИМ

Когда скучно и грустно И не хочется спать, По мостам петербургским Ходит Эйлер гулять. Он обходит неспешно Много длинных мостов, Сладкой спелой черешней Кормит каменных львов. Львы его в благодарность Нежно в ухо лизнут И за Эйлером следом По мостам побредут. Каждый мост он проходит Лишь один раз всего, И мосты не разводят, Ожидая его.

КОРОЛЕВСКАЯ ЛОГИКА

— А где же зал суда? — спросила Алиса: она читала в книжках, что суд происходит всегда в «зале суда».

— Залом будет этот двор, — показала Королева на один из трёх дворов замка.

Гости стали садиться прямо на траву, а для Короля и Королевы вынесли трон. Возле трона сразу же столпились какие-то карты и зверушки.

— Это, наверное, приближённые к трону, — догадалась Алиса (она не раз слышала о «приближённых к трону», но только теперь увидела, кто это такие!).

Сев на траву, Алиса обнаружила, что рядом с ней сидит Грифон.

— А где же Черепаха Будто? — спросила Алиса.

— Ползёт потихоньку прямо на бал, — ответил Грифон.

В этот момент Белый Кролик (он тоже оказался среди «приближённых к трону») поднял трубу и трижды протрубил.

Все замолчали, и в наступившей тишине Король Червей приказал Кролику:

— Читай обвинение!

Кролик развернул большой свиток пергамента и прочитал:

— Обвиняется Шляпник.

— А где обвиняемый? — поинтересовался Король.

Поделиться:
Популярные книги

Треск штанов

Ланцов Михаил Алексеевич
6. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Треск штанов

Низший - Инфериор. Компиляция. Книги 1-19

Михайлов Дем Алексеевич
Фантастика 2023. Компиляция
Фантастика:
боевая фантастика
5.00
рейтинг книги
Низший - Инфериор. Компиляция. Книги 1-19

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Фиктивная жена

Шагаева Наталья
1. Братья Вертинские
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Фиктивная жена

Темный Охотник

Розальев Андрей
1. КО: Темный охотник
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Охотник

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Кодекс Охотника. Книга X

Винокуров Юрий
10. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга X

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2

Купидон с топором

Юнина Наталья
Любовные романы:
современные любовные романы
7.67
рейтинг книги
Купидон с топором

Отмороженный 4.0

Гарцевич Евгений Александрович
4. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 4.0

Черный Маг Императора 5

Герда Александр
5. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 5

На границе тучи ходят хмуро...

Кулаков Алексей Иванович
1. Александр Агренев
Фантастика:
альтернативная история
9.28
рейтинг книги
На границе тучи ходят хмуро...