Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Шрифт:

Пусть n — число молекул пара в единице объема. Это число, естественно, меняется с температурой. С притоком тепла испарение увеличивается. Добавим еще одну величину 1/Va, равную числу атомов в единице объема, содержащихся в жидкости; мы предполагаем, что в жидкости каждой молекуле отведен вполне определенный объем, поэтому чем больше в жидкости молекул, тем больший объем они занимают. Если Vaобъем, отведенный одной молекуле, то число молекул в еди­ничном объеме равно единичному объему, деленному на объем, занимаемый молекулой. Далее, предположим, что между мо­лекулами действуют силы притяжения, удерживающие их внутри жидкости. Иначе нельзя понять, почему происходит конденсация. Итак, предположим, что имеется сила притяже­ния и существует энергия связи молекулы в жидкости, которая теряется при переходе молекул в пар. Это наводит на мысль, что для перевода какой-нибудь молекулы из жидкости в пар, нужно совершить работу W. Существует определенная раз­ность W между энергией молекулы в жидкости и ее энергией в паре, потому что для переноса молекул в пар мы должны оторвать ее от всех молекул, к которым она притягивается.

Теперь обратимся к общему принципу, по которому отно­шение числа атомов в единице

объема в разных областях равно n2/n1=ехр[-2– E1/kT)]. Значит, nчисло молекул в еди­ничном объеме пара, деленное на 1/Va(число молекул в еди­ничном объеме жидкости), равно

nVa=ew/kT. (42.1)

Таково общее правило. Это очень похоже на равновесную ат­мосферу в ноле тяжести, когда низшие слои газа плотнее верх­них, потому что для подъема молекулы на высоту h нужна энергия mgh. В жидкости молекулы размещены плотнее, чем в газе, так как их заставляет 'потесниться энергия «подъема» W, и отношение плотностей равно

ехр(-W/kT).

Это как раз то, что мы хотели вывести — плотность пара из­меняется как е в некоторой степени. Показателем служит взятая со знаком минус похожая на энергию величина, деленная на kT. Множители перед экспонентой не особенно интересны, потому что в большинстве случаев плотность пара гораздо меньше плотности жидкости. При этих обстоятельствах, когда мы далеки от критической точки, где плотности почти одина­ковы, соотношение плотностей, при котором nмного меньше l/Ve, обеспечивается тем, что W много больше kT. Поэтому формулы типа (42.1) интересны только тогда, когда W дейст­вительно гораздо больше kT; в этом случае е возводится в гро­мадную отрицательную степень и если немного изменить Т, то изменится слегка и громадная степень, а это изменение по­влечет за собой такие изменения экспоненты, которые будут гораздо важнее возможных изменений предэкспоненциальных множителей. Но отчего бы изменяться таким множителям, как l/Va? Да оттого, что наше описание приблизительно. Ведь в действительности каждая молекула не имеет определенного объема; при изменении температуры объем Vане остается по­стоянным — жидкости сжимаются и расширяются. Есть еще и другие мелочи вроде этой, так что действительная ситуация гораздо сложнее. Почти всюду стоят медленно изменяющиеся с температурой множители. В действительности само W мед­ленно изменяется с температурой, потому что при разных тем­пературах молекулам отведены разные объемы, и притяжение должно быть разным, и т. д. Итак, можно прийти к выводу, что поскольку у нас получилась формула, в которой все неизвест­ным образом изменяется с температурой, то на самом деле формулы никакой и нет. Но если мы знаем, что показатель у экспоненты W/kT заведомо велик, то можно убедиться, что наибольшие изменения кривой плотности пара как функции температуры обусловлены экспоненциальным множителем. По­этому если мы будем считать W постоянной величиной, а коэф­фициент 1/Va — почти постоянной, то это будет хорошим при­ближением вдоль небольшого интервала нашей кривой. Иначе говоря, основные изменения определяются видом функции ехр(-W/kT),

Выходит, что в природе есть много, очень много процессов, для которых характерно взятие энергии взаймы; основным свойством таких процессов является экспоненциальная темпе­ратурная зависимость: е возводится в отношение взятой с отрицательным знаком энергии к kT. Это полезный факт, но только в тех случаях, когда энергия велика по сравнению с kT, поскольку главная часть изменений с температурой опре­деляется изменением kT, а не величиной постоянных и других сомножителей.

Давайте рассмотрим сейчас немного подробнее другой спо­соб получения почти аналогичного результата для испарения. Чтобы получить (42.1), мы просто применили всегда справедливое при равновесии правило, но мало что поняли в существе явления. Поэтому невредно попытаться посмотреть детальнее, как происходит испарение. Можно описать его примерно так: молекулы пара непрерывно бомбардируют поверхность жид­кости; при ударе они могут либо отскочить от поверхности, либо пробить ее. Что случается чаще, нам неизвестно, может быть, отношение этих исходов равно 50 к 50, а может быть и 10 к 90. Предположим, что поверхность пробивается всегда, потом мы посмотрим, к чему приводит предположение о более прочной поверхности. Тогда в каждый момент будет иметься определенное число атомов, сконденсировавшихся на поверх­ности жидкости. Число сконденсировавшихся молекул (число молекул, прошедших через площадку единичной площади) равно числу молекул в единице объема n, умноженному на скорость v. Эта скорость молекул связана с температурой; ведь известно, что в среднем 1/2mv2 равно 3/2 kT. Поэтому v —ка­кая-то средняя скорость. Конечно, нужно еще проинтегриро­вать по углам и сделать всякого рода усреднения, но результат прямо пропорционален корню из среднего квадрата скорости. Таким образом,

Nc=nv, (42.2)

т. е. числу молекул, достигших единичной площадки и сконденсировавшихся.

Но атомы жидкости непрерывно пляшут, и время от времени отдельные атомы выскакивают наружу. Теперь нам нужно выяснить, часто ли это происходит. При равновесии число молекул, выскочивших за 1 сек из жидкости, равно числу мо­лекул, поступивших за это же время на ее поверхность.

Ну, а много ли молекул выскакивает? Чтобы выскочить наружу, молекула должна как-то умудриться приобрести некоторую добавочную энергию, которая окажется больше, чем энергия ее соседок. И этот избыток энергии должен быть довольно большим, ведь наша молекула очень сильно притя­гивается к остальным молекулам жидкости. Обычно ей так и не удается преодолеть этого сильного притяжения, но иногда при столкновениях на ее долю выпадает излишек энергии. Шансы получить необходимую в нашем случае избыточную энергию W невелики, если W>>kT. Действительно, вероятность того, что атом приобретает энергию, большую чем W, равна ехр(-W/kT). Это общий принцип кинетической теории: шансы призанять энергию W сверх средней энергии равны е, возве­денному в степень, показатель которой равен отношению W к kT со знаком минус. Предположим, что некоторым молекулам удалось получить эту энергию. Теперь можно установить, сколько молекул покидает поверхность жидкости за 1 сек. Конечно, получение молекулой нужной энергии еще не означает, что испарение обеспечено. Ведь эта молекула может находиться слишком глубоко в жидкости, а если она даже и находится у поверхности, то может двигаться не туда. Число молекул, покидающих единичную площадку за 1 сек, — это примерно число молекул на единице площади вблизи поверх­ности, деленное на время, которое требуется молекуле для побега, и умноженное на вероятность ехр(-W/kT) готовности молекул к побегу, в том смысле, что они уже получили доста­точное количество энергии.

Предположим, что каждая молекула на поверхности жидко­сти занимает определенную площадку площади А. Тогда число молекул на единице поверхности жидкости равно 1/А. А много ли молекуле нужно времени, чтобы совершить свой побег? Если молекулы движутся с определенной средней скоростью v и должны пройти расстояние, равное, скажем, диаметру моле­кулы D (толщине наружного слоя), то время, нужное для преодоления этого расстояния, и есть время побега, если только молекула обладает достаточной энергией. Это время равно D/v. Таким образом, число испаряющихся молекул приблизительно равно

Заметим, что произведение площади каждой молекулы на тол­щину слоя приблизительно равно объему Va, отведенному каж­дой молекуле. Итак, для получения равновесия мы должны иметь Nc=Ne, или

Можно выкинуть из этого равенства скорости, потому что они равны; если даже специально отметить, что одна из них — скорость молекулы пара, а другая — скорость испаряющейся молекулы, — все равно они одинаковы, ведь мы знаем, что средняя кинетическая энергия обеих молекул (в одном на­правлении) равна 1/2kT. Но можно сказать: «Нет! Нет! Ведь испаряются только особо быстрые молекулы. Только они приобрели достаточный избыток энергии». Не совсем так, потому что в тот момент, когда эти молекулы выскакивают из жидкости, они теряют этот избыток, преодолевая потенциаль­ную энергию. Поэтому при подходе к поверхности они уже движутся с замедленной скоростью v! Точно так же обстояло дело с распределением молекулярных скоростей в атмосфере — в нижних слоях молекулы были определенным образом рас­пределены по энергиям. Те из них, которые достигали более высоких слоев, распределялись по энергиям точно так же, потому что медленные молекулы вверх совсем не поднимались, а быстрые, поднявшись, двигались медленнее. Испаряющиеся молекулы распределены по скоростям так же, как молекулы, движущиеся в глубине жидкости — поистине поразительный факт. Во всяком случае, нет смысла пытаться столь строго обсуждать нашу формулу, потому что в ней есть и дру­гие неточности; например, мы рассматривали вероятность отражения молекул от поверхности, а не их конденсации и т. д. Мы имеем дело лишь с грубым описанием скорости испарения и конденсации и видим, естественно, что плотность пара nизменяется так же, как и раньше, но теперь мы понимаем этот процесс много лучше, а раньше писали почти произволь­ную формулу.

Более глубокое понимание позволит нам выяснить еще кое-что. Например, предположим, что мы откачиваем пар, причем так быстро, что пар удаляется практически с той же быстротой, с какой образуется (если наш насос очень хороший, а испа­рение происходит медленно). С какой скоростью будет про­исходить испарение, если температура жидкости Т будет под­держиваться постоянной? Предположим, что мы эксперимен­тально уже измерили равновесную плотность пара и нам известно, сколько молекул в единице объема может быть в равновесии с жидкостью при заданной температуре. Теперь мы хотим узнать скорость испарения жидкости. Хотя мы ограничились лишь грубым анализом испарения, он все же дал нам сведения о числе прибывающих молекул пара, правда, с точностью до неизвестного коэффициента отражения. Поэтому мы можем использовать то обстоятельство, что при равновесии число покидающих пар молекул равно числу прибывающих молекул. Правда, пар откачивается и молекулы могут только покидать жидкость, но если оставить пар в покое, то устано­вится равновесная плотность, при которой число прибывающих в жидкость молекул равно числу испаряющихся. Следова­тельно, легко видеть, что в этом случае число молекул, поки­дающих поверхность жидкости за 1 сек, равно произведению неизвестного коэффициента отражения R на число молекул, которые ежесекундно возвращались бы в жидкость, если бы пар не откачивался, потому что именно это число входит в уравнение баланса для испарения при равновесии:

Ne=nvR=(vR/Va)e– W/kT(42.5)

Конечно, легче подсчитать число молекул, переходящих из пара в жидкость, потому что в этом случае не надо ничего предполагать о силах, как это приходилось делать при подсчете числа покидающих жидкость молекул. Проще изменить путь рассуждений.

§ 2. Термоиониая эмиссия

Можно привести еще один пример часто встречающегося процесса, столь похожего на испарение жидкости, что его даже не придется анализировать отдельно. В сущности, это та же самая задача. В любой радиолампе есть источник электронов — вольфрамовая нить накаливания и положительно заряженная пластинка, притягивающая электроны. Оторвавшийся с по­верхности вольфрама электрон немедленно улетает к пластинке. Это — «идеальный» насос, который непрерывно «откачивает» электроны. Возникает вопрос: сколько электронов ежесекундно покидает вольфрамовую проволоку и как их число зависит от температуры? Решение задачи дается той же формулой (42.5), потому что электроны, находящиеся в куске металла, при­тягиваются ионами или атомами металла. Они, грубо го­воря, притягиваются металлом. Чтобы оторвать электрон от металла, надо сообщить ему определенное количество энер­гии, т. е. затратить для этого работу. Эта работа для разных металлов различна. Фактически она изменяется даже в зави­симости от вида поверхности у одного и того же металла, но в целом она составляет несколько электронвольт,—величину, вообще типичную для энергии химических реакций. При этом полезно вспомнить, что разность потенциалов химических элементов, например батареи для магниевой вспышки, которая порождается химическими реакциями, порядка 1 в.

Поделиться:
Популярные книги

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Мимик нового Мира 10

Северный Лис
9. Мимик!
Фантастика:
юмористическое фэнтези
альтернативная история
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 10

Столичный доктор

Вязовский Алексей
1. Столичный доктор
Фантастика:
попаданцы
альтернативная история
8.00
рейтинг книги
Столичный доктор

Измена. Без тебя

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Без тебя

Свои чужие

Джокер Ольга
2. Не родные
Любовные романы:
современные любовные романы
6.71
рейтинг книги
Свои чужие

Истребитель. Ас из будущего

Корчевский Юрий Григорьевич
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Истребитель. Ас из будущего

СД. Том 15

Клеванский Кирилл Сергеевич
15. Сердце дракона
Фантастика:
героическая фантастика
боевая фантастика
6.14
рейтинг книги
СД. Том 15

Третий

INDIGO
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Новый Рал 5

Северный Лис
5. Рал!
Фантастика:
попаданцы
5.00
рейтинг книги
Новый Рал 5

Сила рода. Том 3

Вяч Павел
2. Претендент
Фантастика:
фэнтези
боевая фантастика
6.17
рейтинг книги
Сила рода. Том 3

Ветер и искры. Тетралогия

Пехов Алексей Юрьевич
Ветер и искры
Фантастика:
фэнтези
9.45
рейтинг книги
Ветер и искры. Тетралогия