Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Шрифт:
Назовем постоянную пропорциональности Bnm, чтобы помнить, что это не универсальная постоянная природы и зависит она от того, какую пару уровней мы выберем: некоторые уровни возбудить легко, а другие возбуждаются с большим трудом. Теперь надо найти формулу, описывающую скорость перехода из т в п. Эйнштейн предположил, что она складывается из двух частей. Даже если внешнего излучения нет, существует вероятность того, что атом, излучив фотон, перейдет из возбужденного состояния в состояние с меньшей энергией. Это так называемое спонтанное излучение.
Это предположение аналогично идее о том, что даже классический осциллятор, обладая определенной энергией, не может ее сохранить; излучение неизбежно вызывает потерю энергии. Таким образом, по аналогии со спонтанным излучением классических систем существует определенная вероятность Amn(она опять зависит от
Итак, Эйнштейн предположил, что существует три сорта процессов: поглощение, пропорциональное интенсивности света, излучение, пропорциональное интенсивности света (его называют индуцированным излучением, или вынужденным излучением), и спонтанное излучение, не зависящее от интенсивности света.
Предположим теперь, что при температуре Т установилось равновесие, и в состоянии n находится некоторое количество атомов Nn, а в состоянии m — некоторое количество атомов Nm. Тогда полное число атомов, переходящих из n в m, равно произведению числа атомов в состоянии n на скорость перехода одного атома из состояния n в состояние m. Таким образом, мы получили формулу для числа атомов, переходящих за 1 сек из n в m:
Rn®m= NnBnmI(w). (42.13)
Число атомов, переходящих из m в n, получается точно таким же способом: надо умножить число атомов в состоянии m на скорость перехода одного атома. На этот раз получаемое выражение выглядит так:
Rm®n=Nm[Amn+BmnI(w)]. (42.14)
Теперь предположим, что при тепловом равновесии число атомов, поднимающихся на верхний уровень, должно быть равно числу атомов, спускающихся вниз. Это по крайней мере один из способов удержать число атомов на каждом уровне постоянным. Следовательно, при равновесии мы считаем обе скорости равными. Но у нас в запасе есть еще кое-какая информация: мы знаем, насколько велико Nmпо сравнению с Nn; отношение этих чисел равно ехр[—(Em– En)/kT]. После этого Эйнштейн предположил, что частота света, который вовлекается в игру при переходах из m в n, соответствует разности энергий, так что во всех наших формулах Еm– Еn=hw. Итак,
Nm=Nne– hw/kT. (42.15)
Таким
Но Планк уже сказал нам, что формула должна иметь вид (42.12). Следовательно, мы можем сделать кое-какие выводы: прежде всего Bmnдолжно быть равно Bnm, потому что иначе ехр(hw/kT)-1 не получить. Таким образом, Эйнштейн открыл некоторые соотношения, прямого вывода которых он не знал, например, что вероятности вынужденного излучения и поглощения должны быть равны. Это интересно. Кроме того, чтобы (42.17) и (42.12) согласовались,
Amn/Bmn должно быть равно hw3/p2c2. (42.18)
Значит, если известна, скажем, скорость поглощения для заданного уровня, то можно получить скорость спонтанного излучения и скорость вынужденного излучения или какую-нибудь комбинацию этих величин.
Больше этого на основании столь общих предположений ни Эйнштейн, ни вообще кто-либо получить не сможет. Чтобы действительно вычислить абсолютную скорость спонтанного излучения или вообще любую скорость специфически атомного перехода, нужно знать все скрытые механизмы атома. Этому учит так называемая квантовая электродинамика, открытая лишь одиннадцать лет спустя. А Эйнштейн предсказал все это в 1916 г.
Возможность вынужденного излучения в наши дни нашла интересное применение. Если есть свет, то он стремится вызвать переход сверху вниз. Тогда этот переход может увеличить энергию света на hw, если найдутся такие атомы, у которых занят верхний уровень. Можно разработать нетепловой метод приготовления газа, в котором число состояний m гораздо больше числа состояний n. Газ будет очень далек от равновесия, и формулу ехр(-hw/kT), верную для равновесия, к нему применить нельзя. Можно добиться даже, чтобы число занятых верхних состояний было очень большим, тогда как число атомов в нижнем состоянии практически будет равно нулю. Тогда свет с частотой, соответствующей разности энергий Em– Еn, будет поглощаться очень слабо, потому что атомов, находящихся в состоянии n и способных поглотить его, очень мало. С другой стороны, когда газ из таких атомов освещен, то свет вызывает излучение из верхнего состояния! Таким образом, если в верхнем состоянии находится много атомов, то начинается что-то вроде цепной реакции, когда атомы вдруг начинают излучать; более того, они вынуждены излучать и все разом проваливаются в нижнее состояние. Так работает лазер, а если излучаются инфракрасные волны, то их источник называют мазером.
Чтобы загнать атомы в состояние m, прибегают к разным ухищрениям. Может существовать более высокий уровень, на который атомы можно поднять сильным пучком света высокой частоты. С этого высокого уровня атомы падают вниз, испуская самые различные фотоны, пока не соберутся на уровне т. Если атомы стремятся задержаться на уровне m, не излучая фотонов, то этот уровень называют метастабильным. А потом атомы разом спрыгивают с уровня m, сопровождая прыжок вынужденным излучением. Еще одна техническая деталь — если поместить нашу систему в обычный ящик, то она может спонтанно излучать во многих направлениях, что наносит ущерб вынужденному излучению. Но можно усилить эффект вынуждения и увеличить его значение, поставив у каждой стенки ящика почти полностью отражающие зеркала; тогда излученный свет получает шанс вызвать дополнительное излучение, следующее отражение добавит еще один такой шанс, а потом еще, еще и еще. Хотя зеркала отражают почти весь свет, существует небольшая вероятность прохождения части света сквозь зеркало и выхода наружу. В конце концов весь свет, подчиняясь закону сохранения энергии, выйдет наружу в виде тонкого, сильного пучка. Так и получают мощные пучки света в лазерах