Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Шрифт:

Эта формула, конечно, неточна, потому что «постоянная» с зависит от того, в каком объеме позволено объединяться А и В и т. п., но, обратясь к термодинамическим аргументам, можно придать смысл величине W в экспоненциальном множителе, и тогда окажется, что она тесно связана с энергией, необхо­димой для реакции.

Попробуем понять эту формулу как результат столкнове­ний, приблизительно так же, как мы постигали формулу ис­парения, подсчитывая электроны, вырывающиеся в пространство, и те, которые возвращаются назад за единицу времени. Предположим, что при столкновениях А и В иногда образуют соединение АВ. И предположим еще, что АВ — это сложная молекула, которая участвует в общей пляске и по которой ударяют другие молекулы, причем время от времени она получает энергию, достаточную для того, чтобы взорваться и снова развалиться на части А и В.

Заметим, что в химических реакциях дело обстоит

так, что если сближающиеся атомы имеют слишком малую энергию, то, хотя этой энергии и достаточно для реакции

А+В®АВ, факт соударения атомов А и В еще не обязательно означает начало реакции. Обычно требуется, чтобы соударение было более «жестким», «мягкого» соударения между А и В может оказаться недостаточно для начала реакции, даже если в процессе освобождается достаточное для реакции количество энергии. Предположим, что общей чертой химических реакций является требование, по которому для объединения А и В в АВ недостаточно простого соударения, а нужно, чтобы они столк­нулись, имея определенное количество энергии. Эта энергия называется энергией активации, т. е. энергия, нужная для «активации» реакции. Пусть А*— тот избыток энергии, кото­рый необходим, чтобы столкновения могли вызвать реакцию. Тогда скорость Rf, с которой А и В порождают АВ, должна содержать произведение числа атомов А и B, умноженное на скорость, с которой отдельный атом ударяется о некоторую площадку величиной sab, и на величину ехр(-A*/kT) (вероят­ность того, что атомы обладают достаточной энергией):

Rf =nAnBvsABe– A*/kT. (42.10)

Теперь надо найти скорость обратного процесса Rr. Есть некоторая вероятность, что А и В снова разойдутся. Чтобы разойтись, им недостаточно энергии W, которая обеспечит их раздельное существование. Но раз молекулам нелегко сое­диниться, должен существовать некий барьер, через который А и В должны перевалить, чтобы разлететься. Они должны запастись не только нужной для их существования энергией, но и взять кое-что про запас. Получается что-то вроде подъема на холм перед спуском в долину; сначала приходится вскараб­каться на высоту, потом спуститься, и только после этого разойтись (фиг. 42.1).

Фиг. 42.1. Соотношение энергий в реакции А+В®АВ.

Таким образом, скорость перехода АВ в А и В пропорциональна произведению nАВначальному числу молекул АВ на

ехр[-(W+A*)/kT]:

Rr=c'nABe– (W+A*)/kT). (42.11)

Постоянная с' складывается из объема атомов и частоты столк­новений; ее можно получить, как и в случае испарения,

перемножая площадь и толщину слоя, но сейчас мы этого делать не будем. Сейчас нас больше интересует тот факт, что, когда эти скорости равны, их отношение равно единице. Это говорит о том, что, как и раньше, (nаnв/nав)=cехр(-W/kT), где с содержит сечения, скорости и другие множители, не зависящие от чисел п. Интересно, что скорость реакции по-прежнему изменяется как ехр(-const/kT), хотя эта постоянная уже не имеет ника­кого отношения к той, с которой мы встречались в задаче о концентрациях; энергия активации А* сильно отличается от энергии W. Энергия W регулирует пропорции А, В и АВ, при которых устанавливается равновесие, но если нам захочется узнать, быстро ли А+В переходит в АВ, то это уже к равно­весию отношения не имеет, и появляется уже другая энергия, энергия активации, которая с помощью экспоненты управляет скоростью реакции.

Кроме того, A* не является фундаментальной постоянной, как W. Предположим, что реакция происходит на поверхности стены, или на какой-нибудь другой поверхности, тогда А и В могут растечься по ней так, что объединение в А В будет для них более легким делом. Иначе говоря, сквозь гору можно прорыть «туннель» или срыть вершину горы. В силу сохра­нения энергии, по какому бы пути мы ни шли, результат будет один: из А и В получится АВ, так что разность энергий W не зависит от пути, по которому идет реакция, однако энергия активации А* очень сильно зависит от этого пути. Вот почему скорости химических реакций столь чувствительны к внешним условиям. Можно изменить скорость реакции, изменив поверх­ность, с которой соприкасаются реактивы, можно изготовить «набор бочонков» и подбирать с его помощью любые скорости, если они зависят от свойств поверхности. Можно внести в среду, в которой происходит реакция, третий предмет; это также может сильно изменить скорость реакции, такие вещества при незначительном изменении А* иногда чрезвычайно влияют на скорость реакции; их называют катализаторами. Реакции может практически не быть совсем, потому что А* слишком велика для заданной температуры, но если добавить это спе­циальное вещество — катализатор, то реакция протекает очень быстро, потому что А* уменьшается.

Между прочим, эта реакция А плюс В, дающая АВ, до­ставляет немало волнений. Ведь невозможно сохранить сразу и энергию, и импульс, пытаясь подогнать два предмета друг к другу, чтобы сделать из них один более устойчивый. Следо­вательно, необходим по крайней мере третий предмет С и ре­альная реакция выглядит гораздо сложнее. Скорость прямого процесса должна содержать произведение nAnBnC, и можно подумать, что наша формула становится неверной, но это не так! Если мы начнем искать скорость развала АВ, то выясним, что этой молекуле еще надо столкнуться с С, поэтому скорость обратной реакции пропорциональна nABnCи из формулы для равновесных концентраций nCвыпадает. Правильность закона равновесия (42.9), который мы написали прежде всего, абсо­лютно гарантирована независимо от любого возможного меха­низма реакции!

§ 5. Законы излучения Эйнштейна

Обратимся теперь к интересной задаче, похожей на только что описанную и связанную с законом излучения чер­ного тела. В предыдущей главе мы разбирали вывод закона распределения излучения в полости по способу Планка, рассматривая излучение осциллятора. Осциллятор обладает определенной средней энергией, а раз он осциллирует, то должен и излучать и накачивать излучение в полость, пока она не заполнится как раз таким количеством излучения, которое нужно для поддержания равновесия между излучением и поглощением. Рассуждая таким образом, мы нашли, что интенсивность излучения частоты w задается формулой

Этот вывод содержит предположение, что генерирующий из­лучение осциллятор обладает определенными уровнями энергии, отстоящими друг от друга на равном расстоянии. Мы не гово­рили о том, что свет состоит из фотонов или чего-то вроде этого. Мы даже не задавали вопроса, каким способом при переходе атома с одного уровня энергии на другой переносится единичная энергия hw в виде света. Первоначальная идея Планка состояла в том, что вещество квантовано, а свет — нет: осциллятор не может получать любую энергию, а должен принимать ее порциями. Вызывает еще беспокойство то, что способ вывода — полуклассический. Мы вычислили скорость излучения осциллятора, исходя из законов классической физики, а потом забы­ли об этом и сказали: «Нет, этот осциллятор имеет много уров­ней энергии». Но для последовательно строгого вывода этой чисто квантовой формулы пришлось пройти длинный путь, завершившийся в 1927 г. созданием квантовой механики. А тем временем Эйнштейн попытался заменить точку зрения Планка, что квантованы только материальные осцилляторы, идеей о том, что свет в действительности состоит из фотонов и его сле­дует в определенном смысле понимать как газ из частиц с энергией hw. Далее, Бор обратил внимание на то, что любая система атомов имеет уровни энергии, но расстояния между ними не обязательно постоянны, как у осцилляторов Планка. Поэтому возникла необходимость пересмотреть вывод или хотя бы более точно исследовать закон излучения, исходя из более последовательной квантовомеханической точки зрения.

Эйнштейн предположил, что окончательная формула Планка правильна и использовал ее для получения новой, ранее неиз­вестной информации о взаимодействии излучения с веществом. Он рассуждал так: надо рассмотреть любые два из возможных уровней энергии атома, скажем, m– й и n-й уровни (фиг. 42.2).

Фиг. 42.2. Переход между двумя уровнями энергии атома.

Затем Эйнштейн предположил, что, когда атом освещается светом подходящей частоты, он может поглотить фотон, перейдя из состояния n в состояние m, и вероятность такого перехода за 1 сек пропорциональна интенсивности освещающего атом света и еще зависит от того, какие уровни мы возьмем.

Поделиться:
Популярные книги

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Мимик нового Мира 10

Северный Лис
9. Мимик!
Фантастика:
юмористическое фэнтези
альтернативная история
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 10

Столичный доктор

Вязовский Алексей
1. Столичный доктор
Фантастика:
попаданцы
альтернативная история
8.00
рейтинг книги
Столичный доктор

Измена. Без тебя

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Без тебя

Свои чужие

Джокер Ольга
2. Не родные
Любовные романы:
современные любовные романы
6.71
рейтинг книги
Свои чужие

Истребитель. Ас из будущего

Корчевский Юрий Григорьевич
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Истребитель. Ас из будущего

СД. Том 15

Клеванский Кирилл Сергеевич
15. Сердце дракона
Фантастика:
героическая фантастика
боевая фантастика
6.14
рейтинг книги
СД. Том 15

Третий

INDIGO
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Новый Рал 5

Северный Лис
5. Рал!
Фантастика:
попаданцы
5.00
рейтинг книги
Новый Рал 5

Сила рода. Том 3

Вяч Павел
2. Претендент
Фантастика:
фэнтези
боевая фантастика
6.17
рейтинг книги
Сила рода. Том 3

Ветер и искры. Тетралогия

Пехов Алексей Юрьевич
Ветер и искры
Фантастика:
фэнтези
9.45
рейтинг книги
Ветер и искры. Тетралогия