Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по гравитации
Шрифт:

Что гравитация - новое поле, номер 31.

Что гравитация - следствие чего-то, что мы уже знаем, но что мы ещё точно не вычислили.

Мы рассмотрим кратко вторую точку зрения для того, чтобы посмотреть, какие в этом случае имеются возможности. Факт универсального притяжения может напомнить нам ситуацию в молекулярной физике; мы знаем, что все молекулы притягиваются друг к другу с силой, которая на больших расстояниях ведёт себя как 1/r. Этот факт мы понимаем в терминах дипольных моментов, которые индуцируются флуктуациями в распределении заряда молекул. То, что это универсальный закон, хорошо известно из того факта, что все вещества могут конденсироваться при соответствующем охлаждении. Итак, одна возможность состоит в том, что гравитация может быть некоторым притяжением, обусловленным подобными флуктуациями в чем-либо, мы пока не знаем в чем, возможно обладающим зарядом.

Если мы

беспокоимся о том факте, что квантовая механика не выполнима тогда, когда очень часто возникают бесконечности при суммировании по всем состояниям, мы могли бы поискать связь между гравитацией, размером вселенной и неприменимостью квантовой механики. Бесконечности всегда появляются, когда мы суммируем все дроби n1/(E-En). Теперь мыслится так, что если мы должны рассмотреть всю вселенную, то мы не должны суммировать по всем виртуальным состояниям обычным образом, а мы должны суммировать только те виртуальные состояния, для которых мы можем взять достаточно энергии из остальной части вселенной. Теория, которая не могла бы разрешать виртуальные состояния, если энергия нарушения больше, чем общая энергия вселенной, была бы слегка отличной от той, которая предполагает, что общая энергия бесконечна. Здесь были бы отличия от обычной теории, но я подозреваю, что ничто другое, кроме как гравитация, не может быть следствием из такой теории.

Мы могли бы рассмотреть вопрос о том, могут ли гравитационные силы возникать вследствие виртуального обмена частицей, которую мы уже знаем, такой как нейтрино. Всё-таки при поверхностном взгляде взаимодействие имеет правильные свойства, так как нейтрино - незаряженная частица с нулевой массой, то это взаимодействие должно было бы зависеть от расстояния как 1/r, и это взаимодействие будет очень слабым.

В следующей лекции мы будем заниматься этой нейтринной теорией гравитации и обнаружим, что такая теория неприменима. Тогда мы начнём строить теорию гравитации как 31-ое поле, которое должно быть обнаружено.

Лекция 2

2.1. Постулаты статистической механики

При построении возможных вариантов нашей теории гравитации мы должны остерегаться от слишком поспешного принятии (без достаточных на то оснований) многих из предрассудков нынешнего научного мировоззрения. В предыдущей лекции мы увидели, что имеется что-то не вполне удовлетворительное в том, что вероятности появляются при нашей интерпретации вселенной. Если мы действительно думаем, что вселенная описывается великой волновой функцией без внешнего наблюдателя, то ничто не может быть когда-либо вероятностью, так как никакого измерения даже не может быть сделано! Это обстоятельство физики имеют ввиду, несмотря на экспериментальное свидетельство оправданности подобного описания для подобластей вселенной, которые могут для наших целей довольно детально описываться волновыми функциями, амплитуды которых представляют вероятности результатов измерений.

Подобным образом, существуют трудности с описанием статистической механики в простом учебнике; хотя этот пример не слишком близко связан с теорией гравитации, но он связан с космологическими вопросами, которые мы будем обсуждать ниже. Довольно часто постулируют a priori, что все состояния равновероятны. Этот постулат не является истиной в нашем мире, как мы видим его. Этот мир не описывается правильно физикой, в которой предполагается выполнение этого постулата. В мире живут люди - не физики - такие как геологи, астрономы, историки, биологи, которые готовы поставить высокую ставку на то, что когда мы наблюдаем ещё ненаблюдаемую область вселенной, мы найдём определённую организацию, которая не предсказывается физикой, которой мы призываем верить. В соответствии с нашим опытом как наблюдателей, мы обнаруживаем, что если мы заглянем в книгу с заглавием на обложке ”Наполеон”, то действительно, шансы на то, что внутри книги будет что-либо о Наполеоне, очень велики. Мы определённо не ожидаем найти систему в термодинамическом равновесии, когда мы открываем эти страницы. Но физики не нашли способа, как учесть подобные шансы для ненаблюдаемых областей вселенной. Современные физики никогда не могли бы предсказать так же хорошо, как геолог, шансы на то, что когда мы взглянем внутрь определённых камней, мы найдём ископаемое топливо.

Подобным образом, историки астрономии и астрономы находят, что всюду во вселенной, которую мы наблюдаем, мы видим звёзды, которые горячее внутри и холоднее снаружи, т. е. системы, которые, на самом деле, весьма далеки от термодинамического равновесия.

Рис. 2.1.

Мы можем понять насколько невероятна такая ситуация с точки зрения обычных предсказаний термодинамики, путём рассмотрения простых упорядочений. Рассмотрим ящик в качестве вселенной, в которой имеется два типа частиц, белые и чёрные. Предположим, что в определённой области вселенной, подобной маленькому углу ящика, мы видим, что все белые частицы отделены от чёрных частиц диагональю (точнее плоскостью, проходящей через диагонали на противоположных сторонах, см. рис. 2.1). Априорная вероятность того, что такая картина имеет место, должна быть очень, очень мала, и мы должны, исходя из наших нынешних предубеждений, приписать этому состоянию статистическую флуктуацию, которая довольно невероятна. Что мы предсказываем для остальной части вселенной? Это предсказание состоит в том, что если мы взглянем на другую область, то мы должны были бы наиболее вероятно найти, что эта другая область имеет значительно менее упорядоченное распределение белых и чёрных частиц. Но фактически, мы такого не обнаруживаем, и в каждой новой области мы наблюдаем то же самое упорядочение, как и в предыдущем случае. Так, если я сяду в свою машину и поеду в горы, которые я до этого никогда не видел, я найду деревья, которые выглядят в точности также, как те деревья, которые я знаю. Если рассматриваются системы с экстремально большим количеством частиц, то вероятности таких наблюдений в терминах обычной статистической механики фантастически малы.

Наилучшим объяснением флуктуации, которая наблюдается, является то только, что многое флуктуировало, и что остальное находится в случайном состоянии. Если все состояния равновероятны a priori, и если найден кусочек мира, который столь односторонен, то остальная часть мира должна была бы быть равномерно перемешана, поскольку тогда была бы меньше флуктуация. Можно было бы возразить, что события и структуры коррелированы; они все имели одно и тоже прошлое! Но это другая теория, чем та, которая лежит в основании описания вселенной в рамках статистической механики. Это та противоположная теория, которая утверждает, что в прошлом мир был более организован, чем сейчас, и что наиболее вероятное состояние не есть состояние равновесия, а некоторое особое состояние, которое динамически эволюционирует. В этом заключается общепризнанное предположение, которое принимается всеми историками, палеонтологами и другими.

Вероятностные аргументы могут быть использованы как тест для теории и могут быть применены следующим образом. Предположим, что на априорной основе мы хотим приписать очень, очень низкие шансы той гипотезе, что вселенная не должна описываться как тщательно подобранная флуктуация от полного хаоса, характеризующего термодинамическое равновесие; например, предположим, что априорная вероятность представления, что все состояния равновероятны, есть 1-10^1. Затем давайте опишем число упорядоченных состояний в соответствии с некоторой схемой; например, предположим, что мы перечислим все состояния, которые упорядочены менее, чем миллионом слов. Теперь мы определим оставшуюся априорную вероятность 10^1. для гипотезы, что вселенная эволюционирует от одного из этих специально упорядоченных состояний в прошлом. Другими словами, мы предполагаем, что все состояния равновероятны, но хотим допустить возможность того, что наблюдательные тесты могут опровергнуть гипотезу равновесия.

Теперь мы начинаем делать наблюдения мира вокруг нас и мы наблюдаем состояния с описываемым порядком. Каждый из нас этим утром видел, что земля была внизу, а воздух был вверху, но одного такого наблюдения достаточно, чтобы увеличить шансы для упорядоченных состояний в апостериорном суждении о вероятности начальной ситуации. И если мы делаем всё больше и больше наблюдений, это увеличение в конце концов достигнет даже 10^1 способом, который может вычисляться в соответствии с теоремой: если априорная вероятность ситуации A есть Pa и если априорная вероятность ситуации B есть Pb, и если сделано наблюдение, которое более вероятно, если A имеет место, и менее вероятно, если B имеет место, то апостериорная вероятность A увеличивается отношением, по которому результат измерения является более вероятным, если A имеет место.

Если делается наблюдение угла вселенной, причём наблюдение макроскопическое, то можно обнаружить, что это состояние весьма далеко от равновесия. Шансы на то, что это может быть флуктуация, экстремально малы; требуется только одиночное наблюдение макроскопического порядка, чтобы уменьшить вероятность до 10^2, для которой только 5000 молекул должны быть упорядочены. Таким образом, совершенно очевидно, что только специальные состояния могли бы порождать огромную степень упорядочения, которую мы видим в мире.

Поделиться:
Популярные книги

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11

Вернуть невесту. Ловушка для попаданки

Ардова Алиса
1. Вернуть невесту
Любовные романы:
любовно-фантастические романы
8.49
рейтинг книги
Вернуть невесту. Ловушка для попаданки

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Измена. Возвращение любви!

Леманн Анастасия
3. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Возвращение любви!

Темный Патриарх Светлого Рода 3

Лисицин Евгений
3. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 3

Вы не прошли собеседование

Олешкевич Надежда
1. Укротить миллионера
Любовные романы:
короткие любовные романы
5.00
рейтинг книги
Вы не прошли собеседование

Назад в ссср 6

Дамиров Рафаэль
6. Курсант
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в ссср 6

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Помещица Бедная Лиза

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Помещица Бедная Лиза

Прометей: Неандерталец

Рави Ивар
4. Прометей
Фантастика:
героическая фантастика
альтернативная история
7.88
рейтинг книги
Прометей: Неандерталец

Измена. (Не)любимая жена олигарха

Лаванда Марго
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. (Не)любимая жена олигарха

Вираж бытия

Ланцов Михаил Алексеевич
1. Фрунзе
Фантастика:
героическая фантастика
попаданцы
альтернативная история
6.86
рейтинг книги
Вираж бытия

Запрети любить

Джейн Анна
1. Навсегда в моем сердце
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Запрети любить

Законы рода

Flow Ascold
1. Граф Берестьев
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Законы рода