Фейнмановские лекции по гравитации
Шрифт:
Как тогда работает термодинамика, если её постулаты вводят в заблуждение? Фокус состоит в том, что мы всегда упорядочиваем объекты таким образом, что мы не делаем эксперименты над объектами, когда мы их находим, а только после того, как мы выбрасываем все те ситуации, которые могли бы привести к нежелательным упорядочениям. Если мы должны проводить эксперименты над газами, которые первоначально помещены в металлический кан, мы должны заботиться о том, чтобы ”дождаться того момента, когда термодинамическое равновесие установится” (как часто мы слышали эту фразу!), и мы выбрасываем все те ситуации, в которых что-либо случается с аппаратурой, что электричество отключается вследствие того, что сгорел предохранитель, или что кто-либо ударил по кану молотком. Мы никогда не проводим экспериментов над вселенной, как таковой, но скорее мы контролируем обстоятельства, чтобы подготовить более тщательно системы, над которыми мы экспериментируем.
Более удовлетворительный способ представления постулатов статистической механики может быть следующим.
Если для примера мы нарисуем скорость молекулы номер 6 в момент времени t=30 мин. как функцию любой другой начальной переменной в системе, например, такой как начальное положение или скорость частицы номер 133, мы найдём экстремально сложную кривую с очень, очень тонкими деталями, которые должны усредняться к ” равновесным” результатам, как только мы усредняем по начальной конечной неопределённости выбранной переменной в данной задаче. Другими словами, распределение начальных значений в рассматриваемом диапазоне должно быть очень похоже на ”равновесное” распределение (рис. 2.2).
Рис. 2.2.
Физически удовлетворительное обсуждение термодинамики и статистической физики может быть достигнуто, если признать, что проблема состоит в том, чтобы определить условия в системе, в которой различные события происходят при очень различных скоростях. Только если эти скорости существенно различны, термодинамика может быть использована. Таким образом, термодинамика должна различить медленные и быстрые процессы. Когда мы говорим о термодинамическом равновесии для нашей массы газа, мы не ждём бесконечное время, а ждём время достаточно продолжительное по сравнению с некоторым классом взаимодействий (например, молекулярных столкновений), который и производит тот тип равновесия, который мы рассматриваем. При изучении кислорода в металлическом кане, мы не ждём так долго, чтобы стенки кана могли бы окислиться или чтобы металл испарился бы в пространство, как в конце концов должно было бы произойти, так как он имеет конечное давление пара, также как мы не рассматриваем всех ядерных реакций, которые время от времени (в согласии с нашей теорией) имеют место для сталкивающихся молекул.
Мы должны быть внимательны при интерпретации этих результатов наших теорий, когда они исследуются с полной математической строгостью. У нас нет физической строгости, которая была бы достаточно хорошо определена. Если имеется что-либо слегка неправильное в нашем определении рассматриваемых теорий, тогда полная математическая строгость может трансформировать эти ошибки в нелепые выводы.
Вопрос заключается в том, как в квантовой механике описать ту идею, что состояние вселенной в прошлом было каким-то особенным. Очевидный путь состоит в том, чтобы сказать, что волновая функция мира (если таковая существует) была определённой при t=-(возраст вселенной). Но это означает, что волновая функция в настоящее время говорит нам не только о нашем мире, но в равной степени и обо всех других возможных вселенных, которые могли эволюционировать из того же самого начала. Это парадокс кота на большом масштабе. Эквивалентно представляется ”наш мир” плюс все другие мёртвые коты, чья смерть была квантовой контролируемой случайностью. Из этого ”наш мир” может быть получен ”редукцией волнового пакета”. Каков механизм этой редукции? Вы должны или предположить, что наблюдаемые создания делают что-либо, не описываемое квантовой механикой (т.е. уравнением Шрёдингера), или что все возможные миры, которые могли бы эволюционировать из прошлого, являются одинаково ”реальными”. Это не значит сказать, что тот или иной выбор является ”плохим”, но значит только отметить, что я верю, что теперешняя квантовая механика подсказывает тот или иной выбор.
2.2. Трудности гипотетических теорий
При построении новой теории мы должны побеспокоиться о том, чтобы добиться того, чтобы построенные теории были точными, дающими описание, из которого могут быть сделаны определённые заключения. Мы не хотим следовать моде, которая позволила бы нам менять детали теории в любом месте, в котором мы найдём, что теория противоречит экспериментам или нашим начальным постулатам. Любая неясная теория, которая не является полным абсурдом, может быть поправлена более неясным разговором в каждом случае, в котором возникают несогласованности - и если мы начинаем верить в такой разговор более, чем в (экспериментальное) доказательство, мы будем находиться в плачевном состоянии. Нечто подобного рода происходит с вариантами единой теории поля. Например, может быть, что одна такая теория говорила, что имеется тензор J, который ”ассоциируется” с электромагнитным тензором. Но что значит такое ”ассоциирование”? Если мы устанавливаем, что эти два объекта идентичны, то такая теория предсказывает неверные эффекты. Но если мы не уточнили, что значит ”ассоциировано”, мы не знаем, что сказано. И разговор о том, что такая ”ассоциация” означает ”предлагать” некоторое новое соотношение, приводит в никуда. Такие неверные предсказания приписываются неверным ”предложениям” скорее, чем неверной теории, и люди сохраняют намерение добавлять новую часть некоторого антисимметричного тензора, которое могло бы как-нибудь устранить недостатки теории. Такой умозрительный разговор заслуживает доверия не больше, чем разговор исследователей чисел, которые ищут случайные соотношения между определёнными величинами, которые должны были бы непрерывно модифицироваться в том случае, если бы значения этих величин измерялись всё с большей и большей точностью сначала первоначально выбранных величин, а затем всё более и более мелких долей этих величин для того, чтобы предлагаемые соотношения не отставали от всё более и более малых неопределённостей в измеряемых величинах.
В этой связи я хотел бы рассказать анекдот, который был частью беседы, произошедшей после коктейля в Париже несколько лет тому назад. Это случилось в то время, когда все дамы таинственным образом исчезли, и я столкнулся лицом к лицу со знаменитым профессором, который торжественно сидел в кресле, окружённый своими студентами. Он спросил: ”Скажите мне, профессор Фейнман, почему Вы уверены в том, что фотон не имеет массы покоя?” Я ответил: ”Конечно, это зависит от массы; очевидно, что если эта масса бесконечно мала, то этот эффект нигде не мог бы проявиться, и я не мог бы опровергнуть его существование, но я был бы рад обсудить, что эта масса не является равной определённой конечной величине. Но условие обсуждения состоит в том, что после того, как я дам аргументы о невозможности такого значения массы, должно быть против правил менять значение массы”. Тогда профессор выбрал значение 10 массы электрона.
Мой ответ состоял в том, что, если мы согласны с тем, что масса фотона связана с частотой как =k^2+m^2, фотоны с различными длинами волн должны были бы путешествовать с различными скоростями. Тогда при наблюдении затменной двойной звезды, которая от нас достаточно удалена, мы должны были бы наблюдать затмение в голубом и красном диапазоне в различное время. Поскольку ничего подобного не наблюдается, мы можем положить верхний предел на эту массу, который, если использовать числа, порядка 10 массы электрона. Мой ответ был переведён профессору. Тогда он захотел узнать, чтобы я сказал, если бы он сказал 10^1^2 массы электрона. Переводивший студент был смущён таким вопросом, я протестовал, что это против наших правил, но согласился попробовать снова.
Если фотоны имеют малую массу, одинаковую для всех фотонов, большие относительные различия от поведения безмассовых фотонов ожидаются в тех случаях, когда длина волны больше. Так что из резкости известного отражения импульсов радара, мы можем положить верхний предел на массу фотона, который несколько лучше, чем предел, получаемый из аргумента двойной затменной звёздной системы. Оказывается, что эта масса должна быть меньше 10^1 массы электрона.
После этого, профессор снова захотел изменить значение массы и сделать её равной 10^1 массы электрона. После этого вопроса все студенты забеспокоились, я запротестовал, поскольку он нарушает правила, делая эту массу всё меньше и меньше, я не смог бы привести аргументы в некотором случае. Тем не менее, я попытался снова. Я спросил его, согласен ли он с тем, что если фотон имеет малую массу, то из аргументов теории поля потенциал фотона зависит от расстояния как exp(-mr)/r. Он согласился. Тогда Земля имеет статическое магнитное поле, которое, как известно, продолжается в пространство на некоторое расстояние (что известно из поведения космических лучей), на расстояние, по-крайней мере, равное нескольким Земным радиусам. Но это значит, что масса фотона должна быть величиной меньшей, чем та, которая соответствует длине распада порядка 8000 миль или 10^2 массы электрона. В этом месте, к моему облегчению, беседа закончилась.
Мы не должны поступать подобным образом при попытках построить теорию гравитации из известных полей, модифицируя величины взаимодействий или вводя новые постулаты в каждом месте, в котором мы обнаружим трудности; мы должны быть готовы выдвинуть определённые теории, использующие известное поведении наших полей, и подготовится к тому, чтобы отвергнуть их, если они окажутся неадекватными.
2.3. Обмен одним нейтрино
Посмотрим можем ли мы получить силу, чем либо похожую на гравитацию, обменом одним нейтрино. Эти пробные теории, которые мы обсуждаем, неточно сформулированы и не полностью исследованы потому, что они не кажутся подходящими, когда мы делаем первые несколько оценок. Может быть, возможно преодолеть эти трудности, которые заставляют нас отвергнуть эти оценки, но я чувствую, что предпочтительнее упорно придерживаться тех правил, относительно которых мы договорились, что мы должны пытаться дать объяснение в терминах известных свойств частиц без каких бы то ни было новых постулатов. Это мне не удалось.