Чтение онлайн

на главную

Жанры

Физика для "чайников"
Шрифт:

Второй с начала и конца последнего раздела абзац. Атомная физика. Когда-то считали, что атом - это самый маленький "кирпичик", из которого состоят вещества, якобы неделимый (само слово "атомос" в переводе с греческого и означает "неделимый"). Но потом народ начал натыкаться на то, что всё-таки там что-то внутри есть: как то, хоть те же электроны - они же не сами по себе болтаются? Тем более что "выплёвывали" их как раз именно атомы. На эту тему долго чесал себе репу товарищ с инициалами и фамилией Дж. Дж. Томсон (точно не помню, тот же ли это Томсон, что формулу для колебательного контура вывел, или же последнее сделал его сын), ранее открывший сам электрон. И придумал он нехитрую модель: атом - это такой пудинг (или кекс) с изюмом: тесто - это размазанный по всему атому положительный заряд, а изюминки - это электрончики, каждый из которых имеет свой отрицательный зарядик, и вместе они дают такой заряд, что атом будет электронейтрален (то бишь заряд его - ноль, как это и должно быть). Но потом его ученик Эрнест Резерфорд (правнук которого, кстати, в наши дни до сих пор играет в одной достаточно известной как за бугром, так и у нас, группе) опроверг такую теорию. А именно: он использовал кусочек радиоактивного вещества (радиоактивность тогда уже была открыта), который, кроме всего прочего, плевался альфа-частицами - ядрами атома гелия. Эти частички бомбардировали специальную золотую фольгу, на которой можно было увидеть, куда что попало. Если бы "пудинг с изюмом" действительно бы существовал, то все частички дружно рассредоточились

в маленький круг (из-за слабого кулоновского отталкивания друг от друга) и попадали бы на мишень. Итог - на мишени был бы круг. А на деле? На деле получилось, что некоторые частички отражаются на большие углы, отдельные (единицы из тысяч) вообще отражаются на 90 градусов или - более того - поворачивают назад! Товарищ Резерфорд предположил так: атом - это не кекс с изюмом, а что-то вроде маленькой планетарной системы. Центр - "солнце" - это ядро, а вокруг него, как планеты, болтаются электрончики, каждый на своей "орбите". Ядро заряжено положительно, электрончики - отрицательно, итог - атом в целом электронейтрален, как это и должно быть. Причём ядро по размеру гораздо меньше атома - примерно настолько же, насколько яблоко меньше Земли. И некоторые частички отклонялись так странно как раз потому, что попадали именно в ядро, которое отталкивало их от себя куда ни попадя.

Но и тут физики не успокоились! Как же так - электрон крутится по орбите, значит, движется с центростремительным ускорением, которое, вообще говоря, отрицательно - значит, он замедляется, - значит, теряет энергию! К тому же, он ещё и должен притягиваться положительно заряженным ядром - короче, вся теория идёт прахом, ничего снова не объясняет, иначе все электрончики бы попадали на ядро и с большим удовольствием сопели бы там на боку очень короткое время, после чего нейтрализовались бы вместе с положительным зарядом ядра. Тогда голос подал другой физик, по фамилии Бор. Он погрозил пальцем и сказал: так-то всё так, ребятки, да не совсем. Во-первых, да, электрончики крутятся вокруг атома. Но: у каждого из электронов есть своё "стационарное" состояние, в котором он свою энергию не теряет. Да, вот так: крутится, но энергию не теряет, и сам атом при этом стабилен, и всё хорошо. Ну а уж если его побеспокоить, тогда вступает в силу второй постулат: если атом возбудить (это значит всего лишь изменить его энергию - а не то, что вы подумали!), то внутри него происходит следующее: электрончик карабкается (если атому дают энергию) на орбиту (или несколько, если энергии хватает) выше или падает (если атом отдаёт энергию) на орбиту (или несколько, если теряется много энергии) ниже, при этом либо он поглощает квант электромагнитного излучения (когда получает энергию), либо излучает его (когда отдаёт). Энергия такого кванта будет равна: h*ню = E2 - E1, то бишь просто разнице энергий. В зависимости от того, насколько сильно вдарить по атому (и по какому атому тоже!), энергия вышибаемого из него излучения может быть разной. И что ещё примечательно: набор квантиков, который испускает (или поглощает) тот или иной атом при возбуждении, у каждого свой! То есть один атом, например, плюётся только красным, жёлто-зелёным и фиолетовым, а другой - только оранжевым и кучей оттенков синего. Более того, набор тех "цветов", что он выплёвывает, и тех, что поглощает, ВСЕГДА совпадает. Это легло в основу такой исследовательской штуки, как спектроскопия: освещая то или иное вещество и смотря, какие именно цвета (длины волн) оно поглощает, можно определить, из каких атомов оно состоит!

Но такое явление нашло себя не только в заумной диагностике, а ещё и в обычной жизни. Например, если пустить обычный электрический ток большой силы по вольфрамовой нити, то она начнёт не только греться, но ещё при этом и, пытаясь остыть, светиться. Это будет обычная лампочка накаливания. Более сложный пример - если пустить ток через газ, например, неон. Электрончики, бегающие по получившейся плазме, будут ударяться об обычные атомы, возбуждать их, а те, стремясь вернуться в обычное состояние - всё к тому же равновесию!
– будут давать тоже кванты с длиной волны света. Ещё более сложный пример - если взять лампу дневного света на парах, например, ртути: через пары ртути тоже пускают ток, она тоже даёт излучение, но в ультрафиолетовом диапазоне, который не виден! А чтобы он стал виден, делают по-хитрому: этот ультрафиолет падает на специальное вещество, нанесённое по ту сторону оболочки лампы. Оно возбуждается уже ультрафиолетовым излучением, и снова та же картина: стремясь "успокоиться" обратно, выплёвывает кванты видимого света (то есть с уже меньшей энергией). Такую штуку называют люминесценцией, а лампы - люминесцентными. Самый сложный и невидимый глазами пример - это если разогнанные напряжением в десятки киловольт электроны заставить с разгону удариться головой об атомы (например, меди или хоть того же вольфрама, хотя теоретически, в принципе, материал не особо важен - нужно только, чтобы он был плотным, иначе электрончики тупо проткнут его насквозь и полетят дальше, даже не заметив). Тогда полученная энергия будет такой, что атом станет плеваться квантами рентгеновского диапазона - именно таким излучением просвечивают грудную клетку, когда делают флюорографию, или челюсть, когда делают рентгеновский снимок зубов. В свою очередь, даже та же фотобумага - это тоже удел атомной физики: раньше, ещё во времена аналоговых фотоаппаратов, делали бумагу из специальных материалов. Она чутко реагировала на свет, и если запечатлённое на плёнку изображение просветить так, чтобы его отображение уложилось точно на бумагу, то и получилась бы фотография. Всё это делалось в темноте (иначе кадр пропадёт - будучи засвеченными, атомы материала плёнки вернутся обратно в спокойное состояние (они специально подбирались такими, чтобы возбуждённое состояние держалось достаточно долго, дабы успеть потом это возбуждение снять), и - прощай, картинка, ищи-свищи, где они там были возбуждены, а где нет!), в специальных фотолабораториях... Не то, что сейчас - нажал кнопку, и вот тебе уже готовая фотка, хоть сразу в интернет заливай. Только атомной физики и в цифровом фотоаппарате сильно меньше не стало, просто там используют не бумагу, а специальные фотоматрицы, каждая "ячеечка" (пиксель) которых реагирует на свет всё теми же многострадальными атомами. Но это уже гораздо более сложная вещь, такие в школе не проходят. Самый зубодробительный пример - если заставить кучу атомов одновременно испускать кванты с одной и той же длиной волны, загоняя электрончики на одни и те же орбиты, отчего они все синхронно будут падать. Такой "электронопад" лежит в основе работы лазера. Причём лазеры излучают как видимый свет (и выглядит это вовсе не как полоса света или световая "пуля", а просто пятно в месте попадания луча, как от лазерной указки!), так и инфракрасное излучение, и ультрафиолет, и даже рентгеновские лучи. Шагают по длине волны и в другую сторону - специальные "мазеры" излучают волны микроволнового диапазона тоже одной и той же длины. Последние применяются в том числе в таких страшных штуках, как лучевое оружие. Опять-таки, ещё раз повторю - никакое излучение, кроме видимого света, не увидишь! Лучи чёрт-те каких диапазонов, которые кругом и всюду показывают как видимые лучи (кроме обычного света), остаются видимыми пока что только в научной фантастике!

Немного ушли от темы, но в целом по школьной части в общих чертах почти всё. Дальше товарищи стали чесать репы ещё и ещё и пришли к выводу, что классическая механика для описания строения атома никак не подходит. СТО тогда ещё только разрабатывалась, но и она тоже тут не в кассу. Итог - появилась квантовая механика, которая очень скрупулезно описывает мелкие частички типа тех же электрончиков. Тут понеслось по полной программе: не то, что для школы - для технического вуза математика с физикой пошли такие, что действительно без пол-литра или очень хорошего преподавателя (или и то, и другое вместе) не разберёшь. К атомной физике это прикоснулось таким образом: электрон - это теперь

больше не шарик, крутящийся по орбите. Это тоже и частица, и волна одновременно, он размазан по пространству всего атома, болтаясь тудыть-сюдыть со скоростью порядка 10^5 м/с, но те места, в которых его нахождение наиболее вероятно, образуют "орбиталь" - это то, что обозначается в таблице Менделеева непонятными маленькими буквами s, p, d и f. То бишь таких видов орбиталей всего четыре.

А ещё у электрончика есть непонятный параметр под названием "спин". Когда электрон представляли ещё как шарик, то предполагали, что спин означает то, что электрон крутится не только вокруг ядра атома, но и вокруг своей оси (точно так же, как и наша Земля - не только вокруг Солнца, но и вокруг себя). Потом, правда, фантазия сама себе сломала голову представлять - и частица, и волна одновременно, и размеров почти не имеет, да ещё и что-то там крутится вокруг себя, когда крутится нечему! Во накрутили (каламбурчик). Но именно спин отвечает за то, что атом умеет "чувствовать" магнитное поле. Грубо говоря, когда спины всех электрончиков атома поворачиваются в одну сторону, вещество из этих атомов становится намагниченным. Когда спины повёрнуты так, что половина направлена в одну сторону, половина - в другую (как это бывает обычно), вещество не реагирует на магнитное поле. Спин - это безразмерное число, и для электрона он может быть равным только +1/2 или -1/2 (смотрит "вверх" или "вниз" соответственно, или крутится "по часовой стрелке" либо "против часовой стрелки", если представлять как шарик. Кавычки ставлю специально, потому что где в атоме верх, а где низ - чёрт-те его знает.)

И наконец... Наконец, чтобы окончательно "убить" атомную физику, придётся смириться с тем, что она смыкается с химией. А именно - всё с той же таблицей Менделеева. Конкретнее: в ней представлено большинство возможных атомов, какие только могут быть. Если совсем строго - далеко не все, но все основные и более-менее стабильные точно. "Стабильные" значит то, что атом так и будет оставаться ядром с электрончиками достаточно долгое время. "Нестабильный" значит, что атом по какой-то причине не может удержать в охапке все свои внутренности и через какое-то время либо развалится на два других, более лёгких, атома, либо от него "отколется" небольшой кусочек в виде одной-двух частичек. И то, и другое называется радиоактивным распадом. Но об этом уже лучше в ядерной физике.

Что ещё из атомной физики подсказывает таблица Менделеева. Это: число энергетических уровней ("орбит"), которые имеет атом - это строка (период), в котором стоит тот или иной химический элемент. Число электрончиков, находящихся на самой верхней "орбите" (именно они активнее всего участвуют во всяких взаимодействиях, как то: их легче всего отщепить от атома, заставив переносить электрический ток или прилепиться к другому атому, у которых не хватает электрончиков для того, чтобы полностью заполнить внешний уровень - то бишь верхнюю "орбиту") - это номер столбца (группы), в которой находится химический элемент. Номер каждого химического элемента тоже подобран не случайно: это число электронов во всём атоме вообще, оно же положительный заряд ядра, оно же число протонов. (О протонах и нейтронах тоже расскажу в ядерной физике, это следующий и последний абзац.) Масса атома - это число протонов и нейтронов, вместе взятых (масса электрона считается очень маленькой по сравнению с массами протонов и нейтронов - разница почти в 2000 раз, поэтому их не считают). Мерится в специальных единицах - атомные единицы массы (а.е.м.). 1 а.е.м. = 1.66*10^-24 г или 1/12 от массы атома углерода. Да, и тут снова углерод. По всей видимости, это один из самых стабильных и распространённых атомов, которые есть - именно поэтому и моли, и а.е.м. считают от него. Моли тут тоже привязаны: если масса элемента равна 1 а.е.м, то 1 моль такого элемента будет весить 1 г. Для того же углерода получается, что 1 моль его будет весить 12 г (так как масса 12 а.е.м.) У железа, например, масса одного моля - 56 г. Короче, та же молярная масса, что и была в термодинамике. Ну и последнее, что в таблице Менделеева уже не указывается, но что для каждого атома своё - это его радиус. Чётких границ он не имеет, поэтому его считают просто как расстояние между ядрами соседних атомов, которые связаны друг с другом. Естественно, чем больше в атоме внутренностей - чем больше напихано всякой хрени в ядре и чем больше электронов болтается вокруг, тем он ширше. Но в среднем размер атома колеблется где-то от десятков до сотен пикометров ("пико" - это 10^-12, одна тысячная нанометра... то есть где-то одна триллионная доля метра). То есть, если проводить сравнение с тем же яблоком, разница в порядках примерно такая же, атом настолько же меньше яблока, насколько ядро атома меньше его самого: если яблоко - это один атом, то Земля - это одно большое яблоко, в состав которого входит наш "атом".

И самое последнее. Несмотря на то, что атом вот так бессовестно распотрошили на мелкие частички, он не становится совсем не нужным физике. Очень многие физические процессы рассматривают, именно представляя вещество как большую кучу атомов, а некоторые и об атомах забывают и смотрят ещё "выше" - на молекулы: так, молекулярная физика об атомах почти забывает, вспоминая о них только как о составных частях молекул; большое количество прикладных наук, в том числе инженерных, смотрят на атом как на неделимый шарик, из которого могут разве что выплёвываться электрончики с энергетическими переходами (которые дают кванты электромагнитных волн), и только ядерная физика реально разрезает атом на части, забывает о нём и погружается ещё глубже, к самому "фундаменту".

Вкратце и поумнее: существовало несколько моделей атома. Модель Томсона - "пудинг с изюмом": атом - это положительно заряженная частица, в котором содержатся электроны. Модель Резерфорда это предположение опровергла: опыт по рассеиванию альфа-частиц на золотой фольге показал, что атом состоит из положительно заряженного "ядра", вокруг которого, по предположению, вращаются электроны. Недостаток теории Резерфорда в том, что электрон должен терять энергию, так как движется с отрицательным центростремительным ускорением, и притягиваться атомом - но этого не происходит. Бор выдвинул два постулата, объясняющих это: 1) атом может находиться в нескольких стационарных состояниях, при котором электрон может двигаться вокруг ядра, не теряя энергии, при этом энергия атома постоянна; 2) при переходе из одного стационарного состояния в другое электрон переходит на другую орбиту (другой энергетический уровень), испуская при этом квант энергии или поглощая его (при потере энергии - испускает, при получении энергии - поглощает). Квантовомеханическая (текущая на данный момент) модель атома принимает во внимание, что электрон является частицей и волной одновременно; геометрическое место точек, в котором наиболее вероятно его нахождение, называется электронной орбиталью. Всего есть четыре типа орбиталей: s, p, d и f. Спин электрона - величина, отвечающая за магнитные свойства вещества; наглядно его можно было представить как вращение электрона вокруг своей оси. Принимает значения +1/2 и -1/2. Связь между параметрами атома и его положением в периодической системе элементов Менделеева: период - это количество энергетических уровней, которые имеет атом, группа - число электронов на внешнем уровне, номер элемента - заряд ядра, или число электронов, или число протонов; атомная масса - число протонов и нейтронов. Атомная масса измеряется в атомных единицах массы (а.е.м.), 1 а.е.м. = 1/12 массы атома углерода-12, приближённо равна 1.66*10^-24 г. Радиус атома измеряется по расстоянию между ядрами атомов, связанных ковалентной связью, в зависимости от атомного номера он составляет от десятков пикометров до сотен пикометров.

Подходим к финишу! Осталась последняя, в чём-то очень простая, но и в чём-то очень сложная часть. Простая потому, что самая сложная математика здесь на уровне "прибавить-отнять". Сложная потому, что глазами представить всё то, что и как творится во вроде бы и без того крошечном атомном ядре, не очень просто. И в том, что ядерная физика тесно сплетена всё с той же химией и с квантовой механикой. Но это последний раздел, после него всё закончится. Как перед нырком - набрали воздуха и вперёд.

Поделиться:
Популярные книги

Темный Лекарь 3

Токсик Саша
3. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 3

Лорд Системы 11

Токсик Саша
11. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 11

Мимик нового Мира 7

Северный Лис
6. Мимик!
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 7

Папина дочка

Рам Янка
4. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Папина дочка

Расческа для лысого

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
8.52
рейтинг книги
Расческа для лысого

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Кодекс Охотника. Книга III

Винокуров Юрий
3. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Кодекс Охотника. Книга III

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Ярость Богов

Михайлов Дем Алексеевич
3. Мир Вальдиры
Фантастика:
фэнтези
рпг
9.48
рейтинг книги
Ярость Богов

Лорд Системы 12

Токсик Саша
12. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 12

Релокант. По следам Ушедшего

Ascold Flow
3. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. По следам Ушедшего

Ну привет, заучка...

Зайцева Мария
Любовные романы:
эро литература
короткие любовные романы
8.30
рейтинг книги
Ну привет, заучка...

Морозная гряда. Первый пояс

Игнатов Михаил Павлович
3. Путь
Фантастика:
фэнтези
7.91
рейтинг книги
Морозная гряда. Первый пояс

На границе тучи ходят хмуро...

Кулаков Алексей Иванович
1. Александр Агренев
Фантастика:
альтернативная история
9.28
рейтинг книги
На границе тучи ходят хмуро...