Чтение онлайн

на главную

Жанры

Физика для "чайников"
Шрифт:

И вот наконец подходим к концу здоровенной темы про постоянный ток. Осталась последняя часть, на которую в современной технологии делается гигантский упор - ток через полупроводники. Попробуем разобраться, что это за звери, с чем их едят, и почему на них так набросились в последнее время.

Полупроводники - это вещества, у которых удельное сопротивление сильно зависит от температуры. Причём, в отличие от металлов, оно при увеличении температуры уменьшается (то есть чем горячее полупроводник, тем лучше он пропускает ток). При низких температурах полупроводник ведёт себя как диэлектрик (ток почти не пропускает), однако уже при комнатной температуре вполне себе может фунциклировать как проводник, разве что сопротивление у него будет побольше, чем у такого же куска металла. Материалы, из которых делают полупроводники, даже можно определить по таблице Менделеева - это в основном III, IV и V группы (3-й, 4-й и 5-й столбцы), самые распространённые - кремний, германий, плюс соединение галлия с мышьяком - арсенид галлия, соединение кремния с углеродом - карбид кремния - и всякое такое. Постараюсь не сильно углубляться в химию (а именно она по большей части объясняет, почему некоторые полупроводники проводят сами по себе, некоторые - только в соединениях, а некоторые - и так, и так) и объяснить "на пальцах", что там у них происходит. В тех полупроводниках, которые всё умеют "сами по себе", внутри всё устроено так, что при прикладывании электрического поля внутри атомов сразу же начинают шевелиться электрончики и выскакивают наружу, они достаточно легки на подъём и могут уже без посторонней помощи давать

ток. Такие полупроводники называются собственными; как правило, они относятся к IV группе (например, кремний). Но по "поведению" они не сильно отличаются от металлов, да ещё и сопротивление больше - смысл в них какой? Тогда стали копать дальше. А если взять два полупроводничка? Зависит от того, какие. Если взять кусочек такого же собственного полупроводника, но при этом "подсыпать" в него вещество из V группы (например, фосфор), у которого (кроме всего прочего) на 1 электрончик больше, то получится, что в соединении этот один электрончик будет как бы лишним, и его будет легче всего пустить на ток. Соответственно, больше электрончиков - больше ток, но и переборщить тоже нельзя: в этом случае полупроводник просто станет вести себя так же, как и металл. А так он получится полупроводником n-типа (n означает "negative" - отрицательный, что означает: носителями заряда являются электроны, с минусом). И можно поступить наоборот: в собственный полупроводник IV группы (тот же кремний) подсыпать крошку полупроводника из III группы (например, бора). Итог - получится, что одного из электрончиков будет не хватать, и остальные электрончики, стремясь занять его место, будут перемещаться на пустое место - получится что-то наподобие движения очереди. Чтобы представить это проще и аналогично проводнику n-типа, решили представить всю эту бодягу как движение этого самого "пустого места" - при переходе электрончика, например, со 2-го атома на 1-й, "пустое место", или "дырка", переместилась со 1-го атома на 2-й. По аналогии с электрончиком, дырка имеет такой же заряд, но с "плюсом", и движется в обратную сторону. Полупроводник получается p-типа (p = "positive" - положительный, он же знак заряда дырки), носители заряда - дырки. Несмотря на странное определение дырок, он так же может проводить ток, как и собственный полупроводник, как и полупроводник n-типа. Но это только начало...

А дальше начинаются уже извращения с полученными "игрушками". В школе проходят всего два из них, но для понимания обоих уже приходится немного поломать голову. Первое, с чего всё здесь начинается, - это p-n-переход, который плавно перерастает в полупроводниковый диод. P-n-переход - это просто два куска полупроводников: один p-типа, второй - n, они просто как бы "склеены" вместе. Казалось бы, тут всё должно быть очень просто - если куски взять одинаковыми, то электрончики с n-полупроводника спокойно займут места дырок в p-полупроводнике, в результате получится обычный кусок обычного собственного полупроводника. Как бы не так. В самом начале электрончики и дырки действительно начинают переходить к соседям подобно тому, как люди выскакивают из переполненного автобуса или вагона метро - просто потому, что у соседей "своих" меньше, чем у себя; разумеется, по пути электроны и дырки кушают друг друга (взаимно уничтожают, или, если совсем по-умному выражаться, рекомбинируют друг с другом). Но это происходит не со всеми: когда одни электрончики и дырки в области, близкой к границе раздела, дружно сливаются в нейтральный атом, другие, пришедшие за ними, могут "остановиться" рядом с нейтральным атомом и больше особо не двигаться - даже несмотря на то, что впереди ещё есть много вожделенных дырок. То же самое и с дырками с другой стороны. В итоге получается, что в области на границе раздела, где электрончики и дырки скушали друг друга (она называется областью обеднённого заряда, или обеднённой областью - в ней зарядов почти не осталось, за исключением тех, которые пришли, при этом сил у них идти дальше нет, и они не собираются уходить), образуется какой-то заряд: в p-полупроводнике образуется "стена" из отрицательного заряда, не пускающая электрончики из n-полупроводника дальше (и при этом "стена" не стремится к дыркам!), аналогично и в n-полупроводнике получается стена "дырок", не пускающая дырки из p-полупроводника дальше, причём стена из дырок тоже достаточно стойкая, чтобы не обвалиться и не потянуться к электрончикам в n-полупроводнике. Более того, эти две стены тоже не тянутся друг к другу! То есть глазами это можно представить примерно так, слева направо: куча дырок, она постепенно разряжается вплоть до полного их отсутствия, через небольшое расстояние идёт воображаемая "стена" из электрончиков (необязательно прямая и строго вертикальная, но какое-то количество зарядов там будет), потом снова нейтральная зона, граница раздела, опять нейтральная зона, "стена" из дырок и, наконец, снова нейтральная зона, в которой при дальнейшем передвижении вправо становится всё больше и больше электрончиков. И всё - в таком состоянии p-n-переход может находиться, в общем-то, неограниченное время. Сдаётся мне, плюсы к минусам здесь не притягиваются всё по тому же вездесущему закону Кулона: слишком маленький заряд тех, кто хочет притянуться, и слишком большое расстояние для того, чтобы сила притяжения была достаточно большой.

Ну вот, а теперь, если воткнуть такой кусок с p-n-переходом в цепь, то это и будет полупроводниковый диод. Если подключить его n-полупроводник к "минусу" источника тока, а p-полупроводник - к "плюсу", то полученное поле начнёт как бы "проталкивать" заряды каждый к своему противоположному знаку, в итоге получится, что через диод течёт ток. Если же приложить напряжение наоборот - минус к p, а плюс к n - тогда ничего не будет: внутри диода получится что-то вроде перетягивания каната, наружу его ничего не выползет: плюс будет стремиться вытащить электрончики к себе, а минус - дырки; итого через диод тока практически не будет. Вместо "p-полупроводник" и "n-полупроводник" используют соответственно "анод" и "катод". Здесь можно очень легко запутаться, хотя и катод - это то, что при подключении к минусу откроет диод, а анод - то, что откроет при подключении к плюсу. С учётом того, что катод - это как бы "минус", в то же время n-полупроводник, который ассоциируется с минусом, а анод - наоборот, запутаться можно очень легко (даже мне сейчас при написании этих строк пришлось нарисовать p-n-переход и понаставить кучу плюсов, минусов и стрелочек, чтобы сообразить, что где находится и как называется). Чтобы запомнить всю эту бодягу, достаточно помнить два правила. Первый: как запомнить знаки анода и катода. В словах "анод" и "плюс" одинаковое число букв - 4, и в словах "катод" и "минус" тоже одинаковое число букв (5). И второе правило: электрончики имеют знак "минус", а заряды противоположных знаков притягиваются. Это значит, что если подключить n-полупроводник (электроны) к "минусу", то электроны начнёт отталкивать от "минуса" и притягивать к "плюсу" и своим противоположностям в p-полупроводник, и они начнут бежать до тех пор, пока не пробегут круг и не вернутся на n-полупроводник диода (пройдут через "минус"). То есть электроны бегут от катода к аноду. Но! У них знак "минус" - а это значит, что ток, который они дают, отрицателен - то есть, направлен в противоположную сторону, то бишь от анода к катоду (или от плюса к минусу). Кошмар, я знаю. Из всего из этого, в общем-то, вытекает только одно: диод - это прибор с односторонней проводимостью. В одну сторону пропускает ток, в другую - нет. Диоды любят применять в цепях, где нельзя, чтобы ток случайно повернул назад: в какой-то момент на его пути ставят диод (в открытом состоянии, когда пропускает ток, он имеет малое сопротивление), а обратно уже не пускает.

И второй прибор, в котором аж два p-n-перехода - это транзистор. Соответственно, он может состоять из полупроводников p-n-p или n-p-n. Вообще говоря, транзисторов понапридумывали столько, что становится страшно даже студенту последнего курса технического вуза, но в школе проходят только один - и то стараются не пугать уймой умных слов. Каждый из участников-полупроводников (по-умному - электродов) имеет своё название: эмиттер, база, коллектор. Серединная - всегда база, остальные два внешне практически не отличаются друг от друга. По сути, транзистор можно включить всего тремя разными способами: первый - когда оба p-n-перехода

открыты, второй - когда один закрыт, другой открыт, и третий - когда оба закрыты. (Дальше я буду объяснять на примере n-p-n-транзистора, для p-n-p меняем слово "электроны" на "дырки" и наоборот). Последний случай самый простой - транзистор работает так же, как обратно включённый диод - просто ничего не пропускает через себя, "закрыт". Второй случай тоже, в принципе, прост: в этом случае практически весь ток проходит из эмиттера в коллектор, в базе остаётся лишь малость (это сделано специально: толщину базы делают очень маленькой, чтобы попавшие туда электроны не успели толком быть съеденными дырками в ней, и проскочили её, попав в коллектор; а там его хватает сильное электрическое поле обратно смещённого перехода и тащит уже из коллектора вон). Если на базе транзистора будет "вход" той или иной электрической схемы, то на её "выходе" при малом изменении тока базы получится большое изменение тока эмиттера или коллектора. Это и есть основное преимущество транзистора - усиление слабых электрических сигналов, как это любят говорить всё те же радиолюбители. Наконец, первый случай, когда оба открыты - это что-то среднее, "переходное". При нём поле ослабляет хватку "стен", удерживающих дальнейшее проникновение электронов в p-область (базу), и с обеих сторон туда хлынут зарядики. Итог - и через эмиттер, и через коллектор потекут токи.

Самое главное, что выжимают из транзистора из всего этого вороха p, n, открытых, закрытых переходов и непонятных токов - что транзистор используют для усиления сигналов. Всё. Вместе с тем, с учётом того, что транзистор может быть "закрыт", как диод, его можно использовать как обычный выключатель, только включаться-выключаться он будет не руками, а тем же электричеством. И в этом направлении шагнули настолько далеко, что добрались аж до компьютеров.

Вкратце и поумнее: полупроводники - это вещества, у которых удельное сопротивление сильно зависит от температуры; при увеличении температуры удельное сопротивление резко снижается. Полупроводники можно разделить на собственные и примесные. В собственных полупроводниках проводимость возникает за счёт разрыва ковалентных связей между атомами. Примесный полупроводник n-типа - полупроводник, в кристалле которого присутствуют атомы элемента, имеющего бОльшую валентность; в таких полупроводниках носители заряда - электроны. Примесный полупроводник p-типа - полупроводник, в кристалле которого присутствуют атомы элемента, имеющего меньшую валентность; в таких полупроводниках носители заряда - дырки, движение дырки представляется как движение пустого (вакантного) места, которое образовалось из-за отсутствия электрона. P-n-переход - это область пространства на стыке двух полупроводников p- и n-типа, в котором происходит переход от одного типа проводимости к другому. При контакте двух полупроводников образуется обеднённый слой заряда за счёт встречной диффузии электронов и дырок, после образуется запирающий электрический слой, поле которого препятствует дальнейшему взаимопроникновению носителей зарядов. Поскольку запирающий слой обеднён, он имеет повышенное сопротивление; при приложении электрического поля к p-полупроводнику к n-полупроводнику сопротивление резко уменьшается, при обратном приложении - резко возрастает. Полупроводниковый диод - прибор на основе одного p-n-перехода, имеет одностороннюю проводимость. Транзистор - прибор на основе двух p-n-переходов, позволяет усиливать электрические сигналы.

Да. Я знаю. Пэ, эн, переходы, диоды и транзисторы съели весь мозг, а потом отрыгнули его в полупереваренном виде. Но чисто электрическая часть отступила! Теперь снова можно немного расслабиться и вспомнить о таких штуках, как магниты и магнетизм. Почему-то электричество и магнетизм всё время идут бок о бок друг с другом. Даже в самом-самом начале этого большого раздела, когда ещё говорил про точечные зарядики, я упомянул слово "электромагнитные". Вот теперь настала пора выйти из тени второму "сиамскому близнецу" - магнитному полю. Это тоже вид материи, тоже действует на заряды, но! При этом оно порождается только движущимися зарядами и действует тоже только на заряды движущиеся. Причём если электрическим полем частичку можно ускорить, то магнитным - никогда! Оно может только повернуть её в ту или иную сторону. Короче, если электрическое поле - это ходовая часть машины, то магнитное - это её руль. Если дальше сравнивать магнитное поле с электрическим, то у него используют только силовую характеристику, которую называют индукцией магнитного поля. Описывается почти так же, как и напряжённость электрического поля - но с поправкой на то, что заряд движется. Поэтому B = F/(q*v), причём из-за скорости получается дополнительная сложность - считать именно таким образом можно, только если наш зарядик движется перпендикулярно полю, то есть ровнёхонько под 90 градусов! Более крутая математика может дать ответ, как считать, если угол не 90, но для школы эта математика настолько страшна, что этим голову не забивают. Вместе с тем, магнитное поле может действовать и на целые проводники с током (потому что в них тоже есть движущиеся заряды), поэтому индукцию можно посчитать ещё и так: B = F/(I*l). B - индукция магнитного поля, F - сила, с которой поле действует, q - заряд, v - модуль (значение) скорости, I - ток через проводник, l - длина проводника. Единица индукции названа опять в честь учёного, на сей раз по фамилии Тесла - обозначается Тл, произносится "тесла". Размерность Тл обычно раскрывают как Н/(А*м). (Можно и как Н*с/(Кл*м), но это уж как-то совсем грустно.)

Да, и у магнитного поля тоже есть свои нудные силовые линии. Они определяются так же, как и электрические - касательная к линии в каждой её точке совпадает по направлению с вектором индукции магнитного поля. Отличие от электрических здесь только одно: магнитные линии ВСЕГДА замкнуты. Запомнить это просто - электрические начинаются и заканчиваются на электрических зарядах, а магнитных зарядов не существует - значит, начинаться и заканчиваться им не на чем, остаётся быть связанными самими с собой.

Ну и как же может действовать это самое магнитное поле? С двумя вариантами сил, которые похожи друг на друга. Одна - на проводник с током (сила Ампера), другая на отдельный движущийся зарядик (сила Лоренца). Сила Ампера будет равна: F = I*B*l*sinальфа, где F - сила, I - сила тока в проводнике, B - индукция магнитного поля, которое действует, l - длина проводника, альфа - угол между направлением тока и направлением вектора индукции магнитного поля. Отсюда сразу же можно увидеть: если проводник поставить перпендикулярно магнитному полю, то синус смело выкидываем - он становится единицей, а если проводник повернуть точь-в-точь по направлению магнитного поля - никакой магнитной силы на него действовать не будет, так как синус становится нулём, убивая тем самым все усилия поля наповал. Сила Лоренца для частицы считается похожим образом: F = B*v*q*sinальфа. F, B и альфа означают то же самое, v - модуль (значение) скорости движения частички, q - её заряд. (Угол "альфа", естественно, будет между направлением скорости и индукции поля.)

В общем-то, для расчётов ничего архисложного - умножай да дели. Сложнее обычно нарисовать, а как эта сила будет направлена. Проще всего это запомнить при помощи правила левой руки. О нём наверняка говорили в школе, но я на всякий пожарный напишу его и тут. Вытягиваем 4 пальца по направлению тока или по направлению движения частицы, если она имеет отрицательный заряд. Ладонь поворачиваем так, чтобы линии магнитной индукции входили в неё. Тогда отогнутый на 90 градусов (по отношению к 4-м остальным) большой палец покажет направление, в котором будет действовать сила Ампера или Лоренца.

В магнетизме есть ещё правило правой руки, но оно применяется немного по-другому. Во-первых, по нему также можно определить направление силы Лоренца, но только если частица ПОЛОЖИТЕЛЬНО заряжена. (Силу Ампера по ней не определишь, так как в проводнике бегают электрончики, которые всегда с минусами.) Порядок определения такой же, только рука правая, а не левая. И второе, где оно применяется - когда нужно определить, в какую сторону будет направлено поле, если смотреть на проводник с током "прямо" - то есть при таком же виде, как если поставить ручку вертикально, а после посмотреть на неё сверху. Направление тока и направление магнитного поля будут такими же, как направление, в котором перемещается винт с обычной правой резьбой, и то направление, в котором его крутят. То есть если направить руку вниз и покрутить её так же, как если бы она закручивала винт, то она будет крутиться по часовой стрелке. И наоборот: вверх - значит, против часовой стрелки.

Поделиться:
Популярные книги

Паладин из прошлого тысячелетия

Еслер Андрей
1. Соприкосновение миров
Фантастика:
боевая фантастика
попаданцы
6.25
рейтинг книги
Паладин из прошлого тысячелетия

Дорога к счастью

Меллер Юлия Викторовна
Любовные романы:
любовно-фантастические романы
6.11
рейтинг книги
Дорога к счастью

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Законы Рода. Том 3

Flow Ascold
3. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 3

Столичный доктор. Том III

Вязовский Алексей
3. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том III

Адепт. Том 1. Обучение

Бубела Олег Николаевич
6. Совсем не герой
Фантастика:
фэнтези
9.27
рейтинг книги
Адепт. Том 1. Обучение

Огни Аль-Тура. Желанная

Макушева Магда
3. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.25
рейтинг книги
Огни Аль-Тура. Желанная

Отмороженный 4.0

Гарцевич Евгений Александрович
4. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 4.0

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Бестужев. Служба Государевой Безопасности

Измайлов Сергей
1. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II