Чтение онлайн

на главную

Жанры

Физика для "чайников"
Шрифт:

Вкратце и поумнее: преломление света возникает при проходе луча света через границу сред или в толще среды с непрерывно изменяющимися свойствами. Абсолютный показатель преломления среды - отношение скорости света в вакууме к скорости света в среде, величина безразмерная. Закон преломления гласит, что отношение синусов угла падения и угла преломления равно относительному показателю преломления второй среды относительно первой. При проходе луча света из оптически более плотной среды в оптически менее плотную может возникнуть полное внутреннее отражение - это явление, при котором свет при падении под определённым углом или углом, его превышающим, не преломляется, а полностью отражается от границы раздела сред. При преломлении света через плоскопараллельную пластину изображение не искажается, только сдвигается. При преломлении света через треугольную призму, более оптически плотную, чем среда, в которой она находится, луч света будет отклоняться к основанию призмы. Линза - это оптически прозрачное тело, ограниченное двумя поверхностями. Тонкая линза - это линза, размер которой много больше радиуса кривизны её поверхностей. Оптический центр линзы - это точка линзы, через которую луч света проходит, не преломляясь. Главная оптическая ось - это прямая, перпендикулярная плоскости линзы и проходящая через её оптический центр. Фокус линзы - это точка, в которой после преломления собираются все лучи (в собирающей линзе) или их продолжения (в рассеивающей линзе), параллельные главной оптической оси. Фокусное расстояние

линзы - расстояние от плоскости линзы до её фокуса. Оптическая сила линзы - это величина, обратная фокусному расстоянию, единица измерения - диоптрий (дп). Увеличение линзы - это отношение линейных размеров изображения предмета к линейным размерам самого предмета: Г = f/d. Формула тонкой линзы: 1/F = 1/f + 1/d, где F - фокусное расстояние линзы, f - расстояние от линзы до изображения, d - расстояние от предмета до линзы. Если линза рассеивающая, то фокусное расстояние её отрицательно (собирающая - положительно), если изображение мнимое - расстояние от линзы до изображения отрицательно (действительное - положительно), если мнимый сам предмет - тогда расстояние от предмета до линзы отрицательно (действительный - положительно).

А теперь придётся резко проститься со всеми прямыми, лучами, зеркалами и линзами, которых можно даже потрогать руками, и вернуться к непонятным волнам. Потому что в один прекрасный (или не прекрасный) момент народ стал думать, а не является ли свет волной. Стали ставить опыты, и - о ужас (для нынешних школьников) - опыты подтверждали это предположение. В основном речь пойдёт именно о них, а также о куче заумных слов, которые выдумали их "постановщики". Чтобы не вводить в полный ступор, всю сопутствующую математику специально опускаю практически полностью.

Свет как волна умеет делать четыре вещи, только с гораздо более мутными названиями, чем в геометрической оптике: он умеет испытывать интерференцию, дифракцию, поляризацию и дисперсию. Последние две вещи в школе почти не проходят, их только кратко обозначают и говорят, что они есть, верьте в них, их не может не быть. Попробуем аккуратно разложить эти страшные слова по полочкам.

Интерференция. Это когда две волны света накладываются друг на друга. Но если б всё было так просто! Интерференцию могут испытывать только когерентные волны. Спокойно, это последнее новое умное слово, дающее удар кувалдой по голове в этом абзаце. "Когерентные" можно перевести на нормальный русский как "синхронные", "согласованные". У когерентных волн одинаковая частота (одинаковая длина волны), плюс волны всегда идут так, что разность их фаз в любой точке пространства остаётся постоянной. То есть самый простой случай - это надо взять график синуса, скопировать его и поместить точь-в-точь под первым. Это будут две когерентные волны. Более сложный пример - вниз вместо синуса поставить косинус того же. Он будет сдвинут на 90 градусов (пи/2), но при этом разница между фазами (стадиями колебаний) всегда будет оставаться в эти 90 градусов, или пи/2, и длина волн тоже будет одинакова, так как синус и косинус берутся от одного и того же. Это тоже когерентные волны. Самый сложный пример - это надо взять обычную включённую лампочку, загородить её непрозрачной ширмой, а затем в последней вырезать две одинаковых дырки. Эти две дырки тоже будут источниками двух когерентных волн света! Вот такие две волны и будут интерферировать (жуткое словечко). Означает это следующее: при наложении друг на друга такие волны будут ослаблять или усиливать интенсивность света друг от друга. Именно это явление, вместе с добавлением прилагательного "когерентные" перед словом "волны", и является интерференцией. Почему так уцепились за когерентность - да потому, что обычные волны света разбросаны по частотам и фазам как хочешь, и любые две такие волны при наложении практически не будут обращать внимания друг на друга вообще. А когда у двух волн длина одинаковая, то они начинают "принюхиваться" друг к другу в каждой точке, пока бегут вместе. В одной из точек может оказаться, что одна волна пришла "в самом расцвете сил" - то, что колеблется, добралось до своей амплитуды, и вторая так же. Тогда это будет интерференционный максимум - свет станет в два раза ярче. А если наоборот - одна волна придёт в самом расцвете сил, а другая в самом упадке сил (тоже будет в амплитуде, но со знаком "минус", выражаясь совсем мозгодробительным языком - иметь сдвиг по фазе на пи относительно первой волны). Тогда эти две амплитуды "скушают" друг друга, в итоге получится ноль - вместо света получится темнота. Чтобы увидеть эти "свет и тьму", достаточно на месте накладывающихся когерентных волн поставить какой-нибудь белый экран - именно так и поступил товарищ по фамилии Юнг, поставив после лампочки и ширмы с двумя дырками в ней этот самый экран. На экране можно было увидеть чередование цветных и тёмных полосок. Почему цветных? Потому, что здесь придётся вспомнить: белый - это для нас цвет, а для света - это смесь всех цветов радуги. Каждый из этих цветов имеет свою длину волны и будет по-своему интерферировать. Поэтому вместо белого пятна будет немного размазанное пятно в виде радуги, дальше слева и справа от него - темнота, ещё дальше - снова "радуга", причём в расстояние между цветными полосками будет вкрапливаться темнота, а сами полоски будут становиться всё тусклее и тусклее - волны света тоже умеют затухать.

Да, заранее хочу предупредить: самостоятельно вырезать дырки в доске и прикладывать её к лампочке можно, но такой же результат при этом не выйдет! Секрет в размерах прорезей: их диаметр они должен быть примерно равен длине волны света.

Дифракция. Это что-то, очень похожее на интерференцию, только с добавлением условий. В самом широком смысле это круг явлений, возникающих при распространении волн в неоднородных средах. Или это явление, названное "огибание волнами препятствия". Совсем по-простому - отклонение от законов геометрической оптики. По-моему, никто до сих пор не может определить это сложное слово каким-то более-менее удобоваримым хотя бы с точки зрения русского языка определением. У всех это что-то неопределённое, типа "комплекс явлений". По сути, дифракция всего лишь означает, что при проходе через ту же щель в доске каждая точка в такой щели будет источником вторичных волн, и эти вторичные волны будут когерентными и будут интерферировать. Всё! Всё остальное - как в интерференции: снова радужные пятна, темнота и так далее. Разница между ними двумя в том, что когерентные волны (только интерференция) можно создать не только препятствием, но и без них - например, лазером. Если включить два одинаковых лазера и направить их лучи в одну точку, то это будет только интерференция, а если делать так, как Юнг - то это получится интерференция, возникшая в результате дифракции. Во как!

Поляризация. Самое сложная для представления штука, но её в школе могут даже и не проходить (разве что в школах с углублённым изучением физики и всё в том же 11-м классе). Во-первых, забиваем на эти страшные когерентности и щели - для поляризации достаточно одной волны. Во-вторых, поляризироваться может только поперечная волна - а возникает она тогда, когда направление возмущений в ней станет меняться относительно направления её распространения. В продольной волне такого быть не может в принципе, потому что у неё эти два направления всегда совпадают. Теперь попробуем сообразить, что это за хитрая комбинация слов и что это вообще всё означает. Когда волна не поляризована, у неё есть просто колебание двух векторов E и B. Поляризоваться может каждый из них, но чтобы совсем не накручивать, представлять это лучше на примере только одного из них. Вот колеблется одна величина: сначала большая,

потом всё меньше, потом вообще ноль, потом становится отрицательной, потом увеличивается, потом снова ноль, потом снова бежит к самому большому своему значению, и так далее. Что будет, если волна, в которой колеблется эта величина, станет поляризованной? Эта вещь по-прежнему будет колебаться, но только колебаться, описывая какую-то определённую фигуру! То есть, допустим, если взять хоть тот же маятник в виде груза на ниточке: если его качать строго влево-вправо, то его координата будет линейно поляризована - она будет "ходить" только по прямой, влево-вправо, не уходя никуда в сторону (описывать воображаемую прямую линию). А если раскрутить его вокруг того места, где подвешена нитка, а потом отпустить - тогда получится круговая поляризация: координата будет описывать воображаемый круг. В самом широком смысле есть ещё эллиптическая поляризация, если описываемая фигура - эллипс, в простонародии "овал". Круг - частный случай овала, кстати, так что, по сути, круговая поляризация - это та же эллиптическая, только в более узком виде. Опять начинаю заплетать умными фразами...

А теперь всю матрёшку складываем обратно. Этот круг описывается колебаниями вектора амплитуды той величины, которая колеблется - то бишь того же вектора напряжённости. То есть ту же кругло поляризованную волну можно представить не в виде синуса, а в виде спирали типа той, что в пружине, внутри которой при её "вращении" бегает по кругу амплитуда вектора напряжённости. Ужас! А теперь нужно добавить сюда второй вектор - B - и пустить их всех гулять в пространстве со своей скоростью в 300 тыщ километров в секунду. Вот это будет кругло поляризованная волна света. Честно, даже сейчас при всём богатстве воображения никак не могу это представить! Но проблема в том, что всему этому ужасу сумели найти применение! А именно: свет от солнца, проходя через наше небо, частично поляризуется - какие-то из его составляющих цветов начинает колбасить подобным образом (мы глазами этого, естественно, не видим). Но если прикрутить на фотоаппарат специальный поляризатор - круглую линзу с тонкой щелью, которую можно поворачивать, - то при определённом угле поворота весь свет, линейно поляризованный в плоскости, перпендикулярной плоскости щели, не сможет пройти. Итог - более сочные цвета на фотографии (например, ярко-синее небо вместо голубого или сочно-зелёная трава вместо блеклой), уходит только "ненужное", "лишнее" освещение, которое только зря осветляет фотку.

Дисперсия. Самое мутное из всех понятий: даже в моём учебнике физики параграф про неё был помечен звёздочкой (повышенная сложность) - даже при том, что школа моя с углублённым изучением физики! И исписано про эту страшную дисперсию было страниц 6 с какими-то непонятными рисунками и формулами. Но всю эту малопонятную (мне, тогда) писанину можно свести всего лишь к одной фразе: дисперсия света - это зависимость показателя преломления среды от частоты (или, что то же самое, длины волны) света. То есть красный свет преломляется "лучше", оранжевый чуть "похуже", и так далее. "Лучше" и "хуже" специально пишу в кавычках, потому что ничего хорошего или плохого в такой зависимости особо и нет. Она просто есть, и всё. Если кому-то вдруг интересно, почему это вообще происходит, вперёд: хоть тот же учебник Пёрышкина "Физика 11" в руки - и в штыковую атаку на страшный параграф со звёздочкой.

Вкратце и поумнее: свет с волновой точки зрения может испытывать интерференцию, дифракцию, поляризацию и дисперсию. Интерференция волн - это увеличение или уменьшение суммарной амплитуды при наложении когерентных волн друг на друга, в случае интерференции света - ослабление или усиление интенсивности света. Когерентные волны - волны, которые имеют одинаковую длину, и разность фаз между которыми в любой точке пространства остаётся постоянной. Дифракция волн - это комплекс явлений, возникающих при распространении волн в неоднородных средах или при огибании ими препятствий. При дифракции на щели в препятствии и размерах щели, близких к длине волны дифрагирующей волны, такая щель становится источником вторичных когерентных волн, которые интерферируют. В случае света в результате дифракции возникает интерференционная картина, например, в опыте Юнга. Поляризация - это явление нарушения симметрии распределения возмущений в поперечной волне относительно направления её распространения. Различают линейную, круговую и (в общем случае) эллиптическую поляризации, в каждом из случаев вектор амплитуды поперечной волны, колеблясь, описывает соответствующую фигуру. В случае поляризации света можно также получить его линейную поляризацию, пропустив свет через поляризатор (например, узкую вертикальную щель), при повороте анализатора (другая узкая щель) можно добиться как полного пропускания поляризованного света, так и полного его непропускания (темнота). Дисперсия - это явление, заключающееся в зависимости скорости волны от её частоты. В случае света это зависимость показателя преломления от длины волны света.

Как только не вертим этот бедный свет - и прямой его представляли, и двумя переплетёнными синусами... Но и это ещё не предел! Между этими двумя представлениями вкрапливается ещё одно, к счастью, последнее: свет - это поток частиц! Исторически сложилось так, что какое-то количество народу придерживалось именно такой точки зрения (это называли корпускулярной теорией, "корпускулы" означает "частицы"), в то время как другие рьяно утверждали, что свет - это волна. В итоге и одни, и другие ставили эксперименты, которые подтверждали свою теорию, опровергали теории противников и якобы разбивали последних в пух и прах. В конце концов сошлись на боевой ничьей: свет теперь считается и потоком частиц, и волной одновременно. Я не знаю, как это можно представить глазами, но современная наука отказываться от этого точно не будет и гордо величает всё это хозяйство "корпускулярно-волновой дуализм света".

Но это так, история. А в этом абзаце речь пойдёт как раз о "частичечной" стороне света, которой, кроме всех прочих, занимался не кто иной, как сам Эйнштейн. И самая её основная (и, пожалуй, единственная изучаемая в школе) часть - это явление фотоэффекта, или фотоэлектрического эффекта. Грубо говоря, это означает, что если включить в простенькую электрическую цепь, например, кусочек металла, то при его освещении по нему может как бы сам собой пойти ток. Звучит как обман? Так, да не так. Потому что не все металлы хорошо дают ток при освещении, и не любой свет даёт ток. Вообще, это правильно называется "внешний фотоэффект" - выбивание электронов из металла под действием света. Есть ещё внутренний фотоэффект, когда электроны тоже выбиваются, но не с поверхности металла, а остаются внутри (откуда и куда именно выбиваются, говорить не стану, в школе всё равно это не проходят). У него есть три закона, из-за которых не удаётся получить ток, просто светя на всё, что может проводить. Во-первых, количество электронов, выбиваемых с поверхности металла в единицу времени, прямо пропорционально освещённости поверхности: чем больше света падает на поверхность, тем больше электронов он выбивает. Логично. Во-вторых, энергия движения электрона (кинетическая которая) от освещённости не зависит, бОльшим количеством света электроны не разгонишь! А зависит она от частоты падающего света: красный пинает электроны еле-еле, если ему это вообще удастся, так как у него меньшая частота (а значит, и меньшая энергия), а фиолетовый футболит всех только так - у него частота наибольшая (поэтому и пинает с самой большой энергией) из видимого света. И, в-третьих, существует такая частота, при которой фотоэффект перестаёт наблюдаться вообще, то есть световой энергии становится недостаточно для того, чтобы вышибить электрончик с поверхности металла. Такая частота называется красной границей фотоэффекта (красная потому, что у красного частота меньше всех из света - то есть это самая маленькая частота света, при которой электрончики выбиваться ещё будут).

Поделиться:
Популярные книги

Идеальный мир для Социопата 5

Сапфир Олег
5. Социопат
Фантастика:
боевая фантастика
рпг
5.50
рейтинг книги
Идеальный мир для Социопата 5

Столичный доктор

Вязовский Алексей
1. Столичный доктор
Фантастика:
попаданцы
альтернативная история
8.00
рейтинг книги
Столичный доктор

На руинах Мальрока

Каменистый Артем
2. Девятый
Фантастика:
боевая фантастика
9.02
рейтинг книги
На руинах Мальрока

Инцел на службе демоницы 1 и 2: Секса будет много

Блум М.
Инцел на службе демоницы
Фантастика:
фэнтези
5.25
рейтинг книги
Инцел на службе демоницы 1 и 2: Секса будет много

Ночь со зверем

Владимирова Анна
3. Оборотни-медведи
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Ночь со зверем

Провинциал. Книга 1

Лопарев Игорь Викторович
1. Провинциал
Фантастика:
космическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Провинциал. Книга 1

На границе империй. Том 10. Часть 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 3

Оружейникъ

Кулаков Алексей Иванович
2. Александр Агренев
Фантастика:
альтернативная история
9.17
рейтинг книги
Оружейникъ

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Боги, пиво и дурак. Том 4

Горина Юлия Николаевна
4. Боги, пиво и дурак
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 4

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9

Жена на четверых

Кожина Ксения
Любовные романы:
любовно-фантастические романы
эро литература
5.60
рейтинг книги
Жена на четверых

Энфис 2

Кронос Александр
2. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 2