Исследования в консервации культурного наследия. Выпуск 3
Шрифт:
А. А. Молодова, Н. В. Волкова, Д. Н. Емельянов, М. С. Чуракова. Новые акриловые полимеры для реставрации холстов станковой масляной живописи
Полиакрилаты – полимерные материалы, широко применяемые в реставрационной практике различных памятников искусства, в том числе для дублирования этнографических тканей и холстов картин [1]. Нами синтезирован ряд акриловых сополимеров на основе бутилметакрилата, которые, имея невысокую молекулярную массу и низкую температуру текучести, могут быть предложены в качестве адгезивов для тканей, в том числе и для холстов, используемых в виде расплава [2]. Состав и некоторые физико-механические свойства полученных сополимеров (СПЛ) приведены в таблице 1. Условия получения сополимеров приведены в работе [2].
Таблица 1. Влияние состава сополимеров на их термо-и физико-механические свойства, текучесть и на адгезию их к ткани (бязь)
Из
Таблица 2. Технические характеристики холстов
Дублировочный холст послойно с помощью кисти пропитывали раствором сополимера. Концентрацию пропитывающего раствора варьировали от 10 до 50 мас.%. Каждый последующий слой полимерного раствора наносили через 1 час после нанесения предыдущего слоя. Количество слоев составило от 1 до 3. Перед склеиванием дублировочный холст сушили в течение суток. Затем дублировочный холст накладывали полимерной стороной на непропитанный полимером холст и в течение 3 минут проглаживали утюгом, нагретым до 120°С. Охлаждение сдублированных холстов проводили при комнатной температуре под давлением груза (мешочек с песком) массой 0,8 кг.
Адгезию клеевого шва к холсту оценивали по сопротивлению отслаиванию . Измерение механических свойств: разрывного напряжения и относительного удлинения, а также сопротивления отслаиванию проводили с помощью разрывной машины Zwick Roell BT1-FR005TN.A50 при скорости растяжения 50 мм/мин и комнатной температуре.
Рис. 1. Зависимость разрывной прочности (р) композиции ткань – СПЛ 85 % БМА—10 % ВА–5 % БА с М=11.5•104 от концентрации пропитывающего раствора (С). 1 – композиция бязь – СПЛ; 2 – композиция льняной холст – СПЛ (на примере среднезернистого холста трехнитки)
Первой задачей исследований было установить, как влияет полимер на физико-механические свойства дублировочного холста. На рис. 1 представлена зависимость влияния концентрации пропитывающего раствора на прочность тканей при разрыве.
Видно, что эта зависимость носит экстремальный характер с максимумом прочности при концентрации раствора тройного сополимера 10 мас.%. Так как ткань является капиллярно-пористым материалом, то проникновение полимера в поры ткани носит диффузионный характер. Очевидно, при концентрации пропитывающего раствора менее или равной 10 мас.% макроклубки глубоко проникают в поры волокон и в промежутки между нитями, склеивая и тем самым укрепляя их. При повышении концентрации раствора макроклубки объединяются в крупные ассоциаты, а при более высокой концентрации образуют сплошную флуктуационную сетку зацеплений. Поэтому таким крупным образованиям становится труднее проникать в поры волокон нитей. В результате они сосредотачиваются лишь на поверхности нитей, сначала лишь обволакивая их, а затем при более высоком содержании полимера в растворе заполняют пространство между нитями, образованное в результате переплетения долевых и поперечных нитей (ячейки). В композиции возрастает содержание полимерного компонента, прочность которого намного ниже прочности самой ткани. В связи с этим при большом содержании полимера в композиции происходит снижение ее прочности. Было установлено, что чем выше прочность полимерной пленки (табл. 1), тем выше прочность ткани, пропитанной данным полимером. Кроме того, установлено также, что прочность ткани, пропитанной раствором полимера из «плохого» для него растворителя (изопропилового спирта), значительно ниже, чем из «хорошего» (этилацетата). Таким образом, на прочность композиций ткань-СПЛ оказывают влияние такие
Исследования адгезионных свойств сдублированных холстов показали прямо пропорциональную зависимость их сопротивления отслаиванию от количества полимера в клеевом шве. Как видно из данных таблиц 3 и 4, чем больше полимера содержится в композиции (это достигается ростом концентрации (С) полимера в пропитывающем растворе и увеличением числа наносимых полимерных слоев (n)), тем больше сопротивление отслаиванию у сдублированных холстов. Максимальную адгезию дублировочного холста с дублируемым при склеивании обеспечивает 50 %-й раствор сополимера при трехкратном его нанесении на дублировочный холст.
Таблица 3. Зависимость сопротивления отслаиванию (у) склеенных тканей (тонкий холст) от содержания (m) сополимера состава 85 % БМА-10 % ВА – 5 % БА с М= 11,5·10 4 в дублировочном холсте
Данную закономерность можно объяснить тем, что полимер, находящийся на дублировочном холсте при его расплавлении переходит в текучее состояние и под некоторым давлением при проглаживании утюгом проникает в промежутки между нитями дублируемого холста, обеспечивая тем самым их склеивание. И чем больше полимера проникает в дублируемую ткань, тем сильнее будет адгезионное взаимодействие клеевого шва с тканью. Были изучены также адгезионные свойства склеенных расплавом тройного СПЛ холстов, предварительно пропитанных желатином. Эти холсты используются реставраторами для укрепления кромок холстов картин. Из данных табл. 4 видно, что присутствие желатина способствует снижению сопротивления отслаиванию у сдублированных холстов. Это связано, очевидно, с тем, что акриловый сополимер не проникает в поры холста, потому что они заняты желатином. А так как из-за плохой совместимости полимеров взаимодействие между ними ослаблено, поэтому и адгезия их друг к другу также будет невысокой.
Таблица 4. Зависимость сопротивления отслаиванию (у) склеенных холстов от содержания (m) сополимера состава 85 % БМА – 10 % ВА – 5 % БА с М = 11,5·10 4 в дублировочном холсте (Концентрация пропитывающего раствора 50 мас.%)
Вводимый в ткани консервант или адгезив должен защитить их от неблагоприятных факторов воздействия окружающей среды, и в частности повышенных температур. Проведенные нами исследования показали, что при прогреве до температуры 120–150°С как полимер или холст, так и их композиция сохраняют прочностные свойства практически неизменными (рис. 2). И лишь прогрев при температуре свыше 150oС приводит к резкому снижению прочностных характеристик исследуемых материалов. Это связано с их деструкцией.
Рис. 2. Зависимость разрывной прочности пленки (р) СПЛ 85 % БМА – 10 % ВА – 5 % БА с ММ=11.5404 (кривая 3), среднезернистого холста трехнитка (кривая 2) и их композиции (кривая 1) от температуры старения (Т).
Концентрация пропитывающего раствора 30 мас.%. Время старения 3 часа
Рис. 3. Изменение содержания СПЛ 85 % БМА – 10 % ВА – 5 % БА с М = 11,5 • 104 в композиции ткань-СПЛ от времени (t) пребывания композиции в этилацетате.
1, 3, 5 – среднезернистый холст трехнитка;
2, 4, 6 – среднезернистый холст трехнитка, обработанный желатином. Температура прогрева, °С: 1, 2 – 200; 3,4 – 150; 5, 6 – 100. Время прогрева 3 часа
Важным требованием реставраторов к полимерам является возможность удаления их из ткани в случае замены на новый материал-консервант. Обычно полимер удаляют из экспоната экстракцией растворителем. На рис. 3 представлена зависимость снижения содержания СПЛ в холсте от времени пребывания композиции в растворителе. Причем композиции были подвергнуты прогреву при повышенных температурах. Видно, что полимер практически полностью экстрагируется из холста только после прогрева композиции при 100°С. Прогрев композиции при температурах 150 и 200°С приводит лишь к частичному вымыванию сополимера из ткани. Это связано, вероятно, с тем, что при данных температурах сополимер сшивается, о чем свидетельствовало отсутствие растворимости его пленки в растворителе.