Истина и красота. Всемирная история симметрии.
Шрифт:
Не нашлось достаточного количества нормальных подгрупп, чтобы соединить ствол со всеми листьями при помощи ветвлений на простое число веток на каждом шаге. Так что процесс решения уравнения пятой степени в радикалах натыкается на внезапную остановку после того первого шага, заключающегося в добавлении квадратного корня. Идти больше некуда. Нет дерева, по которому можно было бы добраться от ствола до листьев, а потому нет формулы для корней в терминах радикалов.
Доказательство
Та же идея работает для уравнений степени 6, 7, 8, 9 — любой степени, старшей 5. Теперь неизбежно возникает вопрос, а почему же уравнения второй, третьей и четвертой степени, тем не менее, разрешимы? Чем выделены степени 2, 3 и 4? В действительности теория групп точно говорит нам, как решить уравнения второй, третьей и четвертой степени. Я оставлю в стороне технические подробности, а вместо этого просто покажу как выглядят деревья. Они в точности соответствуют классическим формулам.
Использование групп для решения уравнений второй, третьей и четвертой степеней.
Теперь мы начинаем видеть красоту идеи Галуа. Из нее следует не только доказательство неразрешимости общего уравнения пятой степени в радикалах, но и объяснение, почему общие уравнения второй, третьей и четвертой степени все же имеютрешения в радикалах; более того, примерно видно то, и какэти решения устроены. Если поработать еще немного, можно извлечь и точныйвид этих решений. Наконец, подход Галуа позволяет отличить те уравнения пятой степени, которые нельзя решить, от тех, которые можно, и говорит нам, как решить эти последние.
Группа Галуа всякого уравнения сообщает нам все, что мы можем пожелать узнать о его решениях. Так почему же Пуассон, Коши, Лакруа и все остальные специалисты не запрыгали от радости, увидев, что же сделал Галуа?
Группа Галуа хранит ужасную тайну.
Тайна эта такого рода. Самый простой способ получить группу какого-либо уравнения состоит в использовании свойств его корней. Но, разумеется, все дело как раз в том, что мы, как правило, не знаем, каковы эти корни. Не будем забывать, что цель состоит в решении уравнения, то есть в нахождении его корней.
Предположим, что кто-то подарит нам конкретное уравнение пятой степени, скажем
x 5– 6 x + 3 = 0
или
x 5 + 15 x + 12 = 0
и попросит использовать методы Галуа, чтобы определить, можно ли решить его в радикалах. Вполне законный вопрос.
Страшная правда состоит в том, что с использованием методов, доступных Галуа, нет никакого способа на него ответить.Можно утверждать, что скорее всего соответствующая группа содержит все 120 перестановок — и если это так, то тогда решить уравнение нельзя. Но мы не знаем наверняка, действительно ли появляются все 120 перестановок. Быть может, пять корней удовлетворяют некоторому специальному
Сколь бы красивой ни была теория Галуа, ей присущи жесткие ограничения. Она имеет дело не с коэффициентами, а с корнями. Другими словами — не с тем, что известно, а с тем, что неизвестно.
Сегодня можно зайти на подходящий математический веб-сайт, ввести туда свое уравнение, и сайт вычислит для вас его группу Галуа. Сегодня известно, что первое из приведенных выше уравнений не разрешимо в радикалах, а второе разрешимо. Я хочу подчеркнуть здесь не то, что мы используем компьютер, а тот факт, что кто-то выяснил, какие шаги надо предпринять для решения задачи. Главнейшее после Галуа продвижение в этой области состояло в разработке способов вычисления группы Галуа любого заданного уравнения.
У самого Галуа таких методов не было. Предстояло пройти целому столетию, чтобы рутинные вычисления групп Галуа стали возможны. Отсутствие же таких методов частично оправдывает реакцию Коши и Пуассона. Они могли сетовать, причем с полным основанием, что идеи Галуа не позволяли решить проблему о разрешимости в радикалах любого данногоуравнения.
Чего они не смогли увидеть, так это того факта, что метод Галуа на самом деле решал чуть другую задачу: определить, какие свойства корней делают уравнение разрешимым. Эта задача получила изящный и глубокий ответ. Что же касается задачи, решение которой они хотели бы получить от Галуа… ну, в ней нет причин ожидать четкого ответа. Просто не существует ясного способа классифицировать разрешимые уравнения в терминах легковычисляемых свойств их коэффициентов.
До сих пор интерпретация групп как симметрий несколько отдавала метафорой. Теперь нам надо сделать ее более буквальной, и этот шаг потребует более геометрической точки зрения. Последователи Галуа быстро осознали, что соотношение между группой и симметрией намного легче понять в геометрическом контексте. На самом деле именно так этот предмет обычно и объясняют в учебных курсах.
Чтобы получить некоторое представление об этом соотношении, кратко осмотрим мою любимую группу — группу симметрий равностороннего треугольника. И зададимся наконец самым фундаментальным вопросом: что же, строго говоря, есть симметрия?
До Галуа все ответы на этот вопрос были довольно расплывчаты и включали в себя размахивание руками и апелляцию к таким свойствам, как изящество пропорции. С концепциями такого типа настоящей математики не построишь. После Галуа спустя недолгий период времени, на протяжении которого математический мир разбирался с общими идеями, стоящими за их очень конкретным применением, — возник простой и двусмысленный ответ. Во-первых, слово «симметрия» надо понимать как «некая симметрия», «одна из симметрий». Объекты не обладают одной-единственной симметрией; они часто имеют много различных симметрий.
Но что же тогда такое эти симметрии? Симметрия некоторого математического объекта — это преобразование, которое сохраняет структуру объекта. Через секунду я разверну это определение в нечто большее, но прежде всего надо заметить, что симметрия представляет собой скорее процесс, нежели объект. Симметрии Галуа являются перестановками (корней уравнения), а перестановка — это некий способ переупорядочить вещи. Строго говоря, это не само переупорядочивание, а правило, которое надо применить, чтобы добиться этого переупорядочения. Не блюдо, а рецепт.