Чтение онлайн

на главную - закладки

Жанры

Как не ошибаться. Сила математического мышления
Шрифт:

Сектор сложных и глубоких математических фактов – это именно то, на что тратят большую часть своего времени профессиональные математики, к числу которых отношусь и я. Здесь обитают знаменитые теоремы и гипотезы, такие как гипотеза Римана, последняя теорема Ферма [14] , гипотеза Пуанкаре [15] , равенство классов P и NP [16] , теорема Гёделя и так далее. Каждая из этих теорем касается идей, имеющих глубокий смысл, фундаментальную важность, поразительную красоту и сугубо специальный характер, и каждая из них сама по себе выступает в качестве главного персонажа многих книг {12} .

14

В настоящее время специалисты называют теорему Ферма теоремой Уайлса, поскольку Эндрю Уайлс доказал ее (не без помощи Ричарда Тейлора),

тогда как Ферма не сделал этого. Однако, по всей вероятности, традиционное название неискоренимо и вряд ли будет когда-нибудь вытеснено.

15

Ее доказал Григорий Перельман. Прим. М. Г.

16

Это гипотеза. Прим. М. Г.

12

Что касается гипотезы Римана, мне больше всего нравятся книги: John Derbyshire. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Plume; Reprint edition, 2004 [Дж. Дербишир. Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. М.: Астрель; Corpus, 2010. – Прим. М. Г.]; Marcus du Sautoy. The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics. New York: Harper Perennial; Reprint edition, 2012. О теореме Гёделя см.: Douglas Hofstadter. G"odel, Escher, Bach: An Eternal Golden Braid. New York: Basic Books, 1999 [Д. Хофштадтер. Гёдель, Эшер, Бах. Эта бесконечная гирлянда. Самара: Бахрах-М, 2001. – Прим. М. Г.]. По правде сказать, теорема Гёделя упоминается в этой книге вскользь, как один из элементов размышлений о самоотносимости в искусстве, музыке и логике.

Но только не моей. То, о чем пойдет речь в настоящей книге, относится к верхнему левому сектору, где находятся простые и глубокие факты. Вы сможете непосредственно, с выгодой для себя использовать представленные здесь математические идеи независимо от того, ограничивается ли ваше математическое образование основами алгебры или охватывает гораздо более широкую область математики. И речь идет не о «фактах самих по себе», таких как простые арифметические утверждения, а о принципах, применение которых выходит далеко за рамки привычных представлений о математике. Мы будем говорить о надежных практических инструментах – их применение поможет вам не совершать ошибок.

Чистая математика представляется чем-то вроде монастыря – спокойное место, надежно защищенное от влияния окружающего мира со всей его суетой и противоречиями. Я вырос в стенах такого убежища. Знакомых мне математически одаренных молодых людей интересовало практическое применение математики в физике или геномике, многих влекла черная магия управления хедж-фондами, но все эти подростковые шатания и проблемы выбора были не для меня [17] . Во время учебы в магистратуре я посвятил себя изучению теории чисел, которую Гаусс называл «королевой математики». Из всех чистых дисциплин это была самая чистейшая – закрытый сад посреди монастыря, где мы размышляли над теми же вопросами о числах и уравнениях, которые занимали умы древних греков и которые едва ли стали менее мучительными за прошедшие две с половиной тысячи лет.

17

Правда, в двадцать с лишним лет я все-таки потратил какое-то время на нешуточные размышления, не стать ли мне настоящим писателем. Я даже написал и опубликовал вполне глубокомысленное литературное произведение – роман The Grasshopper King («Король кузнечиков»). Но пока я работал над ним, то обнаружил, что по полдня слоняюсь в тоске, мечтая лишь об одном: решать математические задачи.

Сначала я работал над теорией чисел в ее классическом виде, доказывая факты о суммах четвертых степеней целых чисел, о которых я при необходимости мог рассказать членам своей семьи на День благодарения, даже если мне и не удавалось объяснить им, как именно я доказал то, что доказал. Но вскоре я увлекся еще более абстрактными областями, изучая задачи, основные элементы которых («остаточно модулярные представления Галуа», «когомология модулярных схем», «динамические системы однородных пространств») невозможно было обсуждать за пределами архипелага университетских аудиторий, коридоров и комнат отдыха, раскинувшегося в водах Оксфорда, Принстона, Киото, Парижа и Мэдисона (штат Висконсин), где я сейчас преподаю. Если я назову все перечисленное волнующим, имеющим смысл и прекрасным и скажу вам, что мне никогда не надоедает размышлять над этими темами, вам придется просто поверить мне, поскольку требуется длительное обучение даже для того, чтобы выйти на уровень, на котором эти объекты изучения попадают в ваше поле зрения.

Но затем произошло нечто интересное. Чем более абстрактными и далекими от реальной жизни становились мои исследования, тем чаще я начал замечать, как много математики присутствует во внешнем мире, за стенами этого убежища. Речь идет не о представлениях Галуа или когомологиях, а о более простых, древних и не менее глубоких понятиях, попадающих в верхний левый сектор нашей таблицы математических концепций. Я начал писать для газет и журналов статьи о том, как выглядит мир сквозь призму математики, и, к своему удивлению, обнаружил, что их охотно читают даже люди, твердящие, как они ненавидят математику. Это было своего рода обучение математике, но обучение, весьма отличающееся от обычных занятий.

Но у такого подхода есть нечто общее с обычными занятиями. Это кое-какие задания, которые предстоит выполнить читателям. Давайте вернемся к эссе фон Неймана «Математик»:

Разобраться в устройстве самолета и понять природу сил, поднимающих самолет в воздух и приводящих его в движение, труднее, чем лететь в салоне самолета, подниматься в нем в заоблачную высь, покрывать огромные расстояния, и даже труднее, чем управлять самолетом.

Только в исключительных случаях процесс удается понять, не научившись применять его практически, руководствуясь инстинктом и опытом [18] .

18

Ю. А. Данилов. Математик фон Нейман и его «Математик». С. 86. Прим. М. Г.

Другими словами, довольно трудно понять математику, не решая математических задач. Царской дороги в геометрии нет, как сказал Евклид Птолемею или – в зависимости от вашего источника – Менехм Александру Македонскому. (Надо признать, популярные изречения, приписываемые древним, вполне возможно, им не принадлежат, но это не делает их менее поучительными.)

В этой книге я не собираюсь вставать в позу и делать величественные жесты в сторону великих математических памятников, не буду учить вас восхищаться ими с большого расстояния. Нам предстоит с головой погрузиться в работу. Мы с вами сделаем кое-какие вычисления. Чтобы донести ту или иную мысль, мне придется, когда это понадобится, прибегать к помощи кое-каких формул и уравнений. Вам не понадобится никаких формальных математических знаний, кроме знаний арифметики, но в то же время вы узнаете о математике многое из того, что выходит за пределы арифметики. Я привожу здесь ряд упрощенных графиков и таблиц. Мы с вами встретим некоторые темы из школьной математики, но вне их обычной среды обитания. Мы узнаем, как тригонометрические функции описывают степени взаимозависимости между двумя переменными, что говорит математический анализ о соотношении между линейными и нелинейными явлениями, а также каким образом формула корней квадратного уравнения служит в качестве когнитивной модели научного познания. Кроме того, мы встретим здесь некоторые математические концепции, изучение которых обычно откладывается до колледжа или до университета. В частности, мы поговорим о таких вещах, как кризис в теории множеств, выступающий здесь в качестве метафоры для судебной практики Верховного суда и судейства в бейсболе; последние достижения в аналитической теории чисел, подтверждающие наличие взаимосвязи между структурой и случайностью; теория информации и комбинаторные схемы, позволяющие объяснить, как несколько студентов MIT выиграли миллионы долларов, разобравшись во внутреннем механизме лотереи штата Массачусетс.

В книге вы найдете рассказы об известных математиках, а также некоторые философские рассуждения. Представлены даже пара доказательств. Зато нет ни домашних заданий, ни тестов.

Часть I

Линейность

Кривая Лаффера

Суть математического анализа, изложенного на одной странице

Закон больших чисел

Некоторые аналогии с терроризмом

«Все американцы к 2048 году будут страдать избыточным весом»

Почему в Южной Дакоте заболеваемость раком мозга выше, чем в Северной Дакоте

Призраки усопших величин

Привычка определять

Глава первая

Стоит ли уподобляться Швеции

Несколько лет назад, в разгар дебатов вокруг «Закона о доступной медицинской помощи», Дэниел Митчелл из либертарианского Института Катона опубликовал в своем блоге статью с провокационным заголовком «Почему Обама пытается сделать Америку больше похожей на Швецию, тогда как сами шведы пытаются быть в меньшей степени шведами?» {13} .

Хороший вопрос! Скажем как можно мягче: это действительно кажется несколько странноватым. Почему, господин президент, мы плывем против течения истории, тогда как во всем мире страны с высоким уровнем социального обеспечения (даже богатая маленькая Швеция!) сокращают дорогостоящие социальные льготы и высокие налоги? «Если шведы извлекли уроки из собственных заблуждений и теперь пытаются сократить объем и границы государственного управления, то почему американские политики так стремятся повторять их ошибки?» – пишет Митчелл.

13

Daniel J. Mitchell. Why Is Obama Trying to Make America More Like Sweden when Swedes Are Trying to Be Less Like Sweden? // Cato Institute, 2010, March 16 (www.cato.org/blog/why-obama-trying-make-america-more-sweden-when-swedes-are-trying-beless-sweden – просмотрено 13.01.2014).

Ответ на этот вопрос требует построения в высшей степени научного графика. Вот как выглядит мир в понимании Института Катона.

Ось x отображает здесь меру «шведскости» [19] , а ось y – некую меру благосостояния. Не имеет значения, в каких именно единицах отображены эти показатели. Суть вот в чем: согласно этому графику, чем выше у вас мера шведскости, тем в худшей ситуации находится ваша страна. Шведы, люди далеко не глупые, поняли это и начали двигаться по графику в северо-западном направлении, к благосостоянию, которое обеспечивает свободный рынок. Однако Обама движется не в том направлении.

19

Под «шведскостью» подразумевается вовсе не такая характерная особенность страны, как «всегда имеющаяся в наличии селедка под десятками разнообразных маринадов», а «уровень социального обеспечения и налогообложения» – состояние, к которому несомненно должны стремиться все без исключения государства.

Поделиться:
Популярные книги

Камень Книга седьмая

Минин Станислав
7. Камень
Фантастика:
фэнтези
боевая фантастика
6.22
рейтинг книги
Камень Книга седьмая

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Ты не мой BOY

Рам Янка
5. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты не мой BOY

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Неверный

Тоцка Тала
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Неверный

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Сердце Дракона. Том 19. Часть 1

Клеванский Кирилл Сергеевич
19. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.52
рейтинг книги
Сердце Дракона. Том 19. Часть 1

Мама для дракончика или Жена к вылуплению

Максонова Мария
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Мама для дракончика или Жена к вылуплению

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Снегурка для опера Морозова

Бигси Анна
4. Опасная работа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Снегурка для опера Морозова

Архил...?

Кожевников Павел
1. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...?

Идеальный мир для Социопата 2

Сапфир Олег
2. Социопат
Фантастика:
боевая фантастика
рпг
6.11
рейтинг книги
Идеальный мир для Социопата 2

Внешняя Зона

Жгулёв Пётр Николаевич
8. Real-Rpg
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Внешняя Зона

Идеальный мир для Лекаря 16

Сапфир Олег
16. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 16