Курс теоретической астрофизики
Шрифт:
3. Эффекты давления.
При получении формулы (8.18) были приняты во внимание только естественная размытость энергетических уровней атома и участие атома в тепловом движении. Однако на вид функции k также сильно влияет присутствие посторонних частиц. Это влияние мы будем называть эффектами давления (так как чем больше давление, тем сильнее это влияние).
Самой простой формой эффектов давления является столкновение атома с посторонней частицей, при котором энергия возбуждения атома передаётся частице (удар второго рода). Из-за таких столкновений среднее время жизни атома в возбуждённом состоянии будет меньше, чем определённое по формуле (8.9), а размытость энергетического уровня — соответственно
t
k
=
1
k+c
.
(8.26)
где c — число столкновений за 1 с, рассчитанное на один возбуждённый атом.
Коэффициент поглощения при учёте столкновений будет опять определяться формулой (8.18), в которой под a следует понимать величину
a
=
E+c
D
,
(8.27)
где c — полуширина, определяемая столкновениями (т.е. соответствующая величине c).
Однако на коэффициент поглощения влияют не только удары второго рода. Гораздо большее влияние на него оказывают прохождения посторонних частиц около атома. При таких прохождениях меняется силовое поле вблизи атома, вследствие чего происходит смещение энергетических уровней. Очевидно, что смещение уровней данного атома меняется с течением времени, а для определённого момента времени уровни разных атомов смещены на неодинаковую величину. Поэтому указанный эффект вызывает расширение спектральных линий.
Задача об определении коэффициента поглощения при учёте прохождения посторонних частиц около атома весьма сложна (см. [3]). При её решении необходимо принимать во внимание как различия в типах атомов (нейтральные и ионизованные), так и различия в типах посторонних частиц (свободные электроны, ионы, нейтральные атомы, молекулы). Обычно принимается, что если посторонняя частица находится на расстоянии r от атома, то происходит смещение частоты линии на величину
=
Ck
rk
,
(8.28)
где k и Ck — некоторые постоянные, различные для разных случаев. При прохождении около атома заряженной частицы k=2 или k=4 (соответственно линейный и квадратичный эффект Штарка). Если рассматриваемые атомы встречаются с подобными им атомами, то k=3 (эффект собственного давления). При встречах атомов с атомами других элементов или с молекулами k=6 (эффект сил ван-дер-Ваальса). Постоянная Ck для каждого случая определяется из теоретических соображений или экспериментально.
Для нахождения коэффициента поглощения при заданном законе взаимодействия между атомами и посторонними частицами были разработаны два метода. Первый из них состоит в рассмотрении отдельных сближений атомов с частицами и в последующем суммировании результатов сближений (метод дискретных встреч). Второй метод основан на определении вероятности напряжённости поля при случайном расположении возмущающих частиц, которые считаются неподвижными (статистическая теория).
При использовании первого метода атом обычно заменяется классическим осциллятором и считается, что каждая встреча атома с частицей ведёт к изменению фазы колебания. Вычисление изменения фазы
c
=
4^3
C
n
(при
k=3
),
(8.29)
c
=
38,8
C^2
v^1
/
^3
n
(при
k=4
),
(8.30)
c
=
17,0
C^2
/
v^3
/
n
(при
k=6
).
(8.31)
В этих формулах v — средняя относительная скорость атома и возмущающей частицы, а n — число частиц в 1 см^3.
Таким образом, в принятой приближённой теории близкие прохождения возмущающих частиц около атома влияют на коэффициент поглощения так же, как удары второго рода. Вместе с тем это влияние аналогично влиянию затухания излучения. Поэтому величина c обычно называется постоянной затухания вследствие столкновений.
Статистическая теория является очень простой, если считать, что возмущение вызывается только ближайшей к атому частицей. Приближённо так считать можно потому, что возмущения далёких частиц в какой-то мере компенсируют друг друга. Обозначим через W(r)dr вероятность того, что ближайшая частица находится на расстоянии от r до r+dr от атома. Как легко показать,
W(r)
dr
=
exp
–
r
r
^3
d
r
r
^3
,
(8.32)
где r — среднее расстояние между частицами, определённое соотношением
4
3
r^3
n
=
1.
(8.33)
От вероятности W(r)dr при помощи формулы (8.28) мы можем перейти к вероятности различных смещений по частоте. Поскольку коэффициент поглощения k пропорционален этой вероятности, то мы получаем
k
Ck3/kn
(3+k)/k
exp
–
4
3
n
Ck
3/k
.
(8.34)
Очевидно, что формулу (8.34) при малых значениях нельзя считать правильной, так как малые возмущения вызываются в основном далёкими частицами. Однако большие возмущения производятся в основном ближайшей частицей. Поэтому формулой (8.34) можно пользоваться при больших значениях . В данном случае, заменяя в формуле (8.34) экспоненциальный множитель единицей (это возможно, когда r<