Чтение онлайн

на главную - закладки

Жанры

Курс теоретической астрофизики
Шрифт:

(T)

E

t

d

+

+

0

B

(T)

E

t

d

.

(9.24)

Для первого слагаемого находим

0

B

(T)

E

t

d

=

1

dz

z^2

0

B

(T)

e

– t

z

d

=

1

dz

z^2

0

e

– (t)z

d

d

d

B

(T')

e

– 'z

d'

=

=

0

B

(T)

E

d

0

d

B

(T')

E

'

d'

(9.25)

(здесь

использовано интегрирование по частям). Во втором же слагаемом при << можно просто заменить t на . Поэтому вместо соотношения (9.24) получаем

0

B

(T)

E

t

dt

=

0

B

(T)

E

d

0

d

B

(T')

E

'

d'

B

(T)

E

.

(9.26)

Подстановка (9.26) в (9.23) даёт

1-r

=

0

G(

)

d

,

(9.27)

где обозначено

G(

)

=

B(T) E d– B(T) E

0 B(T) E d

.

(9.28)

Формулу (9.28)

можно переписать также в виде

G(

)

=

dB(T)

d E d

0 B(T) E d

.

(9.29)

Таким образом, для искомой величины r мы получили формулу (9.27), в которой функция G() даётся формулой (9.29). Легко видеть, что в случае, когда для B(T) принимается выражение (9.15) и величина / считается постоянной в атмосфере, формула (9.27) переходит в приведённую выше формулу (9.20).

В формуле (9.27) функция G() представляет собой весовую функцию при величине /. Удобство вычислений по этой формуле обусловлено тем, что весовая функция зависит только от величин, характеризующих непрерывный спектр (но не линии), и слабо зависит от частоты. Поэтому для данной атмосферы весовую функцию можно заранее табулировать и затем вычислять профили различных линий по формуле (9.27).

Вопрос о вычислении величины r для слабых линий и для крыльев сильных линий был впервые рассмотрен Унзольдом (см. [5]). Предложенный им «метод весовых функций» мы изложили выше для случая, когда делается предположение о локальном термодинамическом равновесии. Однако этот метод с различными видоизменениями применяется также и в других случаях.

4. Отклонения от термодинамического равновесия.

Сделанное нами предположение о локальном термодинамическом равновесии сильно упрощает теорию звёздных спектров. Однако возникает важный вопрос о том, в какой мере справедливо это предположение.

Обратимся прежде всего к сравнению теории с наблюдениями. Из формулы (9.7) следует, что при переходе от центра диска к краю интенсивность внутри линии должна стремиться к интенсивности непрерывного спектра на краю диска, т.е. должно быть

I

(0,)

– >

B

(T)

при

– >

2

.

(9.30)

Иными словами, линии поглощения на краю диска должны исчезать. Особенно ясно это видно из формулы (9.18), из которой следует, что r– >1 при ->/2.

Однако наблюдательные данные об изменении профилей линий на диске Солнца показывают, что исчезновения линий на краю диска в действительности не происходит.

Легко понять, чем вызывается это расхождение между теорией и наблюдениями. В глубоких слоях атмосферы возбуждение атомов происходит в основном под действием столкновений. При этом благодаря максвелловскому распределению частиц по скоростям устанавливается больцмановское распределение атомов по возбуждённым уровням. В свою очередь это приводит к тому, что отношение коэффициента излучения к коэффициенту поглощения будет равняться планковской интенсивности при температуре, равной кинетической температуре газа. Таким образом, в глубоких слоях атмосферы можно предполагать наличие локального термодинамического равновесия. Однако при переходе к менее глубоким слоям роль столкновений в возбуждении атомов уменьшается, а в самых верхних слоях возбуждение вызывается в основном излучением. Вследствие же того, что плотность этого излучения сильно отличается от планковской плотности, распределение атомов по состояниям уже не будет определяться формулой Больцмана. Поэтому не будет соблюдаться и закон Кирхгофа — Планка.

Поделиться:
Популярные книги

Аморальные уроки

Дюран Хельга
Любовные романы:
современные любовные романы
эро литература
6.00
рейтинг книги
Аморальные уроки

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Первый среди равных. Книга V

Бор Жорж
5. Первый среди Равных
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Первый среди равных. Книга V

Барон ненавидит правила

Ренгач Евгений
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон ненавидит правила

Магнатъ

Кулаков Алексей Иванович
4. Александр Агренев
Приключения:
исторические приключения
8.83
рейтинг книги
Магнатъ

Отмороженный 4.0

Гарцевич Евгений Александрович
4. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 4.0

Земная жена на экспорт

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Земная жена на экспорт

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Камень Книга двенадцатая

Минин Станислав
12. Камень
Фантастика:
боевая фантастика
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Камень Книга двенадцатая

Отморозок 1

Поповский Андрей Владимирович
1. Отморозок
Фантастика:
попаданцы
5.00
рейтинг книги
Отморозок 1

Звезда Чёрного Дракона

Джейн Анна
2. Нежеланная невеста
Любовные романы:
любовно-фантастические романы
4.40
рейтинг книги
Звезда Чёрного Дракона

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Сам себе властелин 4

Горбов Александр Михайлович
4. Сам себе властелин
Фантастика:
фэнтези
юмористическая фантастика
попаданцы
6.09
рейтинг книги
Сам себе властелин 4