Чтение онлайн

на главную

Жанры

Курс теоретической астрофизики
Шрифт:

Иначе обстоит дело в случае перераспределения излучения между линиями и непрерывным спектром. Рассмотрим для простоты атом, обладающий только тремя уровнями энергии (1, 2 и 3), причём первые два дискретные, а третий соответствует ионизованному состоянию. Кроме процесса чистого рассеяния в спектральной линии (1->2->1), рассмотренного нами ранее, возможны также два следующих взаимно противоположных циклических процесса: 1) переход 1->3->2->1, т.е. ионизация атома из первого состояния, захват электрона на второй уровень и излучение кванта в линии; 2) переход 1->2->3->1, т.е. поглощение кванта в линии, ионизация из второго состояния и захват электрона на первый уровень. Очевидно, что процессы первого рода приводят к появлению квантов в линии,

а процессы второго рода - к исчезновению таких квантов. В глубоких слоях атмосферы, где можно предполагать наличие термодинамического равновесия, указанные процессы компенсируют друг друга. Однако во внешних слоях атмосферы процессы первого рода преобладают над процессами второго рода. Объясняется это тем, что вероятность процессов первого рода зависит только от плотности излучения за границей основной серии, а вероятность процессов второго рода - как от плотности излучения за границей второй серии, так и от плотности излучения в спектральной линии. Что касается плотности излучения в непрерывном спектре, то она, очевидно, не меняется в атмосфере. Однако плотность излучения в спектральной линии убывает при переходе от глубоких слоёв к внешним.

Таким образом, перераспределение излучения между линиями и непрерывным спектром в звёздных атмосферах чаще приводит к появлению квантов в линии, чем к их исчезновению. В частности, благодаря этому процессу должны увеличиваться центральные интенсивности линий поглощения.

Чтобы определить профили линий при учёте действия указанного флуоресцентного механизма, мы должны составить и решить соответствующее уравнение переноса излучения. Сделаем это, следуя Стрёмгрену.

Примем Эддингтоновскую модель атмосферы и будем исходить из уравнения (10.21). Однако вместо формулы (10.1), определяющей величину , мы напишем

=

(1-)

I

d

4

+

'

,

(10.40)

где ' — объёмный коэффициент излучения, обусловленный процессами первого рода, а под понимается доля квантов в спектральной линии, испытавших истинное поглощение (т.е. доля атомов, перешедших из второго состояния в ионизованное); введением величины учитываются процессы второго рода.

Пользуясь изложенными выше соображениями, легко найти выражение для величины '. В глубоких слоях атмосферы, где число процессов первого рода равно числу процессов второго рода,

'

=

I

.

(10.41)

Вместе с тем в тех же слоях I=B(T) Поэтому вместо (10.41) имеем

'

=

B

(T)

.

(10.42)

Можно считать, что полученное выражение для ', сохранится и при переходе от глубоких слоёв атмосферы к более внешним, так как плотность излучения, вызывающего ионизацию атомов из основного состояния, в атмосфере не меняется. Однако чтобы учесть возможное отличие плотности этого излучения в атмосфере звезды от плотности при термодинамическом равновесии, мы введём в правую часть соотношения (10.42) некоторый поправочный множитель Q. Тогда получаем

=

(1-)

I

+

Q

B

(T)

.

(10.43)

Подставляя (10.43)

в (10.21), а также переходя от переменной r к , находим

cos

dI

d

=

(1+

)I

(1-)

I

(1+Q

)

B

(T)

,

(10.44)

где определяется формулой (10.24).

Получим приближённое решение уравнения (10.44), считая, что =const. Из этого уравнения имеем

dH

d

=

(1+

)

I

(1+Q

)

B

,

(10.45)

dI

d

=

3(1+

)

H

.

(10.46)

Отсюда получается следующее уравнение для определения I:

d^2I

d^2

=

3(1+

)

(1+

)

I

(1+Q

)

B

(10.47)

Решение уравнения (10.47) имеет вид

I

=

C

exp

b

+

1+Q

1+

B

(T)

(1+

),

(10.48)

где

b

^2

=

3(1+

)

(1+

)

,

(10.49)

а C — произвольная постоянная. Постоянная при exp(b) равна нулю, так как I не может с увеличением возрастать экспоненциально. Подставляя (10.48) в (10.46), находим

H

Поделиться:
Популярные книги

Аморальные уроки

Дюран Хельга
Любовные романы:
современные любовные романы
эро литература
6.00
рейтинг книги
Аморальные уроки

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Первый среди равных. Книга V

Бор Жорж
5. Первый среди Равных
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Первый среди равных. Книга V

Барон ненавидит правила

Ренгач Евгений
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон ненавидит правила

Магнатъ

Кулаков Алексей Иванович
4. Александр Агренев
Приключения:
исторические приключения
8.83
рейтинг книги
Магнатъ

Отмороженный 4.0

Гарцевич Евгений Александрович
4. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 4.0

Земная жена на экспорт

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Земная жена на экспорт

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Камень Книга двенадцатая

Минин Станислав
12. Камень
Фантастика:
боевая фантастика
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Камень Книга двенадцатая

Отморозок 1

Поповский Андрей Владимирович
1. Отморозок
Фантастика:
попаданцы
5.00
рейтинг книги
Отморозок 1

Звезда Чёрного Дракона

Джейн Анна
2. Нежеланная невеста
Любовные романы:
любовно-фантастические романы
4.40
рейтинг книги
Звезда Чёрного Дракона

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Сам себе властелин 4

Горбов Александр Михайлович
4. Сам себе властелин
Фантастика:
фэнтези
юмористическая фантастика
попаданцы
6.09
рейтинг книги
Сам себе властелин 4