Курс теоретической астрофизики
Шрифт:
Таким образом, в верхних слоях атмосферы должны существовать значительные отклонения от локального термодинамического равновесия. Этим и объясняется тот факт, что профили линий, вычисленные при предположении о наличии локального термодинамического равновесия, не согласуются с наблюдаемыми профилями линий.
Из сказанного следует, что при решении задачи об образовании линий поглощения в звёздных спектрах коэффициент излучения в линии нельзя задавать формулой (9.3), а его следует определять в ходе решения самой задачи. Точнее говоря, нахождение профилей линий поглощения должно основываться на рассмотрении переноса излучения в спектральных линиях. Таким рассмотрением мы займёмся
Ясно, что при исследовании переноса излучения в спектральных линиях следует одновременно принимать во внимание все линии данного атома, т.е. иметь дело с многоуровенным атомом. Однако в дальнейшем мы будем рассматривать в основном изолированную спектральную линию, т.е. двухуровенный атом. Это необходимо сделать как для получения первого приближения к действительности, так и для более отчётливого понимания физических процессов, ведущих к образованию линейчатых спектров звёзд.
§ 10. Линии поглощения при когерентном рассеянии
1. Модель Шварцшильда — Шустера.
В предыдущем параграфе мы сделали допущение о локальном термодинамическом равновесии в звёздных атмосферах и в соответствии с этим для коэффициента излучения в линии пользовались формулой (9.3). Однако это допущение не подтверждается наблюдениями, и поэтому мы должны рассмотреть те реальные физические процессы, которые обусловливают величину . Как уже говорилось, возбуждение атомов во внешних слоях звёзд вызывается в основном излучением. Следовательно, энергия, излучаемая каким-либо объёмом, зависит от лучистой энергии, поглощаемой этим объёмом. Поэтому чтобы написать выражение для надо знать долю энергии, излучаемой в частоте внутри данной линии, из общего количества поглощаемой лучистой энергии.
Сначала при нахождении величины мы сделаем следующие два предположения:
1. Будем считать, что количество энергии, излучаемое элементарным объёмом в данной линии, точно равно количеству энергии, поглощаемому этим объёмом в той же линии, т.е. нет перераспределения энергии между линиями, а также нет других процессов, ведущих к появлению или исчезновению квантов в рассматриваемой линии. В таком случае говорят о чистом рассеянии излучения в спектральной линии.
2. Будем считать, что энергия, поглощаемая элементарным объёмом в данной частоте внутри линии, испускается им в точности в той же частоте, т.е. нет перераспределения излучения по частотам внутри линии. Такой процесс называется когерентным рассеянием излучения.
Указанные предположения были сделаны ещё в первых работах по теории звёздных спектров и принимались в течение долгого времени. Впоследствии выяснилось, что они весьма далеки от действительности. Это повело к различным уточнениям теории, которые мы рассмотрим позднее.
Из сделанных предположений вытекает, что каждый элементарный объём излучает столько энергии в данной частоте внутри линии, сколько он её поглощает. Таким образом, мы считаем, что в звёздной атмосфере осуществляется монохроматическое лучистое равновесие. Уравнение, выражающее это равновесие, записывается, очевидно, так:
4
=
I
d
,
(10.1)
где
Как уже говорилось во введении к этой главе, первоначально в теории звёздных спектров принималось существование резкой границы между фотосферой и атмосферой. При этом считалось, что из фотосферы идёт излучение без линий поглощения, а эти линии возникают при прохождении излучения через атмосферу. Такая модель внешних слоёв звезды называется моделью Шварцшильда — Шустера.
Принимая эту модель, мы должны в уравнении переноса излучения (9.1) положить равными нулю коэффициенты поглощения и излучения в непрерывном спектре. В таком случае уравнение переноса излучения принимает вид
cos
dI
dr
=-
I
+
.
(10.2)
Введём оптическую глубину в частоте
t
=
r
dr
(10.3)
и обозначим
=
S
.
(10.4)
Тогда вместо уравнений (10.1) и (10.2) получаем
cos
dI(t,)
dt
=
I
(t
,)
–
S
(t
)
,
S
(t
)
=
1/2
0
I
(t
,)
sin
d
.
(10.5)
Заметим, что уравнения (10.5) формально не отличаются от уравнений (2.8) в теории фотосфер. Однако уравнения (2.8) относятся к интегральному излучению, а уравнения (10.5) - к излучению определённой частоты внутри линии.
К системе уравнений (10.5) надо добавить ещё граничные условия. Условие на верхней границе атмосферы (при t=0) выражает отсутствие излучения, падающего на звезду извне:
I
(0,)
=
0
при
>
2
.
(10.6)
Условие на нижней границе атмосферы (при t=t) должно выражать собой тот факт, что интенсивность излучения, входящего из фотосферы в атмосферу, задана и равна интенсивности непрерывного спектра в частоте (её, очевидно, можно считать равной интенсивности излучения, выходящего из атмосферы вблизи линии). Обозначая, как и раньше, эту интенсивность через I(0,), имеем