Механика от античности до наших дней
Шрифт:
2. Моменты сил тяжести и сил тяги (или давления, если они имеются) относительно неподвижной точки равны.
Дель Монте еще не вводит явно понятие момента силы как произведения силы на перпендикуляр, опущенный из неподвижной точки на направление этой силы, но практически неоднократно им пользуется. С помощью геометрического метода он рассматривает задачи о равновесии рычага, весов и грузов на наклонной плоскости. Следует отметить, однако, что в некоторых задачах Дель Монте отступает от геометрической традиции. В задаче о равновесии груза, подвешенного на веревке, перекинутой через блоки, он прибегает к одному из элементарных вариантов принципа возможных скоростей.
Значительный вклад
В своей теории равновесия простейших систем подвешенных тяжелых тел Бенедетти исходит из следующих двух положений: архимедовского закона равновесия рычага и закона равенства моментов сил, т. е. полностью, как мы видим, примыкает к направлению дель Монте.
Понятием момента силы (хотя сам этот термин он еще не вводит) Бенедетти пользуется систематически и формулирует его достаточно четко. Он пишет, что «если хотят сравнить друг с другом величины, которые измеряют действия грузов или движущих сил, то следует каждую из них определять с помощью перпендикуляра, опущенного из центра рычага на направление силы».
С помощью принципа сравнения моментов сил Бенедетти получает окончательное решение поставленной еще Аристотелем задачи об устойчивости Т-образных весов в прямом и перевернутом положениях.
Таким образом, сторонники архимедовской традиции в механике итальянского Возрождения в добавление к архимедовскому принципу равновесия подвешенных тяжелых тел, связанному с понятием центра тяжести тела и системы тел, ввели в геометрическую статику принцип равенства моментов сил.
Хотя в трудах дель Монте и Бенедетти этот принцип представлен в чисто геометрической форме, однако само это понятие появилось под определенным влиянием кинематического направления. Выше упоминалось, что в зачаточной форме оно имеется уже у Леонардо да Винчи, с трудами которого, и в частности с его соображениями по этому поводу, ученик Тартальи Бенедетти был хорошо знаком.
Следует отметить, что и дель Монте, и Бенедетти, в общем далекие от кинематического направления, но связанные с инженерной практикой своего времени [12] , проявляли определенную тенденцию к выработке кратких технических правил расчета равновесия тел, в которых сказывается влияние этого направления.
Крупнейшим и наиболее последовательным представителем геометрического направления был фламандец Симон Стевин (1548—1620). Его труды сыграли завершающую роль в развитии геометрического направления элементарной статики и гидростатики эпохи Возрождения.
12
Бенедетти занимал должность математика герцога Савойского, но обязан был заниматься многочисленными прикладными вопросами.
Стевин был сторонником максимальной строгости и точности расчетов, которых, по его мнению, можно достигнуть лишь с помощью строгих и четких методов геометрической статики. В этом смысле он был наиболее ревностным последователем Архимеда и решительно отвергал традиции кинематической статики, в которой этой четкости не усматривал.
Первые главы его основного труда по механике «Начала статики» (впервые издан в 1586 г. на фламандском языке и переиздан в 1605 г. в собрании «Математических сочинений» Стевина) содержат резкую критику кинематического направления начиная с «Механических проблем».
Свою статику Симон Стевин строит аксиоматически. Вначале дается серия определений, в основу которых положена совокупность основных постулатов геометрической статики Архимеда. Таким образом, закон равновесия рычага Стевин выводит, опираясь на два упомянутых выше архимедовских принципа [13] .
Далее этот закон используется для вывода условий равновесия в более сложных случаях. Кроме того, он вводит еще один дополнительный принцип, который можно назвать принципом невозможности вечного движения или принципом невозможности самостоятельного нарушения равновесия в системе, если это нарушение не меняет ни величины, ни расположения в ней грузов.
13
Характерно, что его доказательство правила равновесия прямого неравноплечего рычага впоследствии было воспроизведено в «Беседах» Галилея.
Руководствуясь этим принципом, Стевин доказывает условие равновесия груза на наклонной плоскости, точнее, в случае двух наклонных плоскостей. Это условие он формулирует в виде следующего предложения: «Пусть мы имеем треугольник, плоскость которого перпендикулярна, а основание параллельно плоскости горизонта; на двух других его сторонах расположены два шара одинаковой величины и одинакового веса; действующая тяжесть левого шара относится к соответствующей ему противолежащей действующей тяжести правого шара, как длина правой стороны треугольника к длине левой».
Приведем его доказательство.
Наклонные стороны рассматриваемого треугольника ABC с вершиной В относятся, как 2 : 1. К двум шарам на этом треугольнике, который представляет собой сечение призмы, Стевин добавляет двенадцать других одинаковых с ними шаров. «Соединим их друг с другом равными нитями, образовав из них ожерелье, в котором наши четырнадцать шаров находятся на равных расстояниях друг от друга. Наденем это ожерелье на наш треугольник так, чтобы на сторону АВ пришлось четыре шара, а на сторону ВС всего два». (Эту цепь с шарами равного веса на равных расстояниях друг от друга можно рассматривать как однородную тяжелую нить.)
Исходя из своего дополнительного принципа, Стевин считает, что рассматриваемая замкнутая цепь будет находиться в равновесии. Перемещение ее в любую из сторон ничего не меняет ни в величине, ни в расположении грузов системы, а цепь сама не проявляет тенденции к перемещению в какую-либо из сторон [14] .
Восемь шаров, висящих под основанием треугольника, на равновесие не влияют, так как эта часть нити в состоянии покоя имеет совершенно симметричную форму. Если отбросить эту часть нити, то в состоянии равновесия системы оставшихся двух отрезков нити ничего не изменится. Эти отрезки будут уравновешивать друг друга. Следовательно, грузы уравновешиваются пропорционально длинам сторон.
14
Согласно Стевину, если бы она проявляла эту тенденцию в какой-то момент, это значит, что она имела бы ее всегда, а это привело бы к вечному движению нити, что невозможно.