Сборник задач по математике с решениями для поступающих в вузы
Шрифт:
19.12. Найдите трехзначное число по следующим условиям: его цифры образуют геометрическую прогрессию; если из него вычесть 594, то получится число, записанное теми же цифрами, но в обратном порядке; если цифры искомого числа увеличить соответственно на 1, на 2 и на 1, то получится арифметическая прогрессия.
19.13. Имеющиеся в колхозе комбайны, работая вместе, могут убрать урожай за одни сутки. Однако по плану комбайны возвращались с других полей и вступали в работу последовательно: в первый час работал лишь один комбайн, во второй — два, в третий — три и т. д. до тех пор, пока не начали работать все комбайны, после чего в течение нескольких часов перед завершением уборки урожая действовали все комбайны. Время
19.14. Три брата, возрасты которых образуют геометрическую прогрессию, делят между собой некую сумму денег пропорционально своему возрасту. Если бы они это проделали через 3 года, когда самый младший окажется вдвое моложе самого старшего, то младший получил бы на 105, а средний на 15 p. больше, чем сейчас. Сколько лет каждому из братьев?
19.15. Три отличных от нуля действительных числа образуют арифметическую прогрессию, а квадраты этих чисел, взятые в том же порядке, образуют геометрическую прогрессию. Найдите всевозможные знаменатели этой геометрической прогрессии.
19.16. Даны два числа а и b. Составим последовательность а, b, a1, b1, a2, b2, ..., аn, bn, ..., каждый член которой, начиная с третьего, равен среднему арифметическому двух предшествующих. Докажите, что
и найдите предел этой последовательности.
19.17. Найдите все положительные значения а, для которых все неотрицательные значения x, удовлетворяющие уравнению
cos [(8а– 3)x] = cos [(14а + 5)x]
и расположенные в порядке возрастания, образуют арифметическую прогрессию.
Глава 20
Суммирование
При решении задач, связанных с последовательностями, приходится доказывать утверждения такого типа: «Для любого целого n >= p (где p — целое) справедливо...»
Доказательство этих утверждений базируется на аксиоме индукции.
Пусть для некоторого утверждения А доказаны две теоремы.
Теорема 1. Утверждение А справедливо для n = p.
Теорема 2. Из условия, что утверждение А справедливо для всех p <= n <= k, следует, что оно справедливо для n = k + 1.
Тогда в качестве аксиомы (она называется аксиомой индукции) принимают, что утверждение А справедливо для всех n >= p (n, p и А — целые числа).
Метод доказательства, основанный на использовании
С помощью метода математической индукции можно доказать формулы
20.1. Докажите неравенство
20.2. В арифметической прогрессии а1, а2, ..., аn первый член равен разности прогрессии: а1 = d. Считая число n данным, найдите
20.3. Найдите сумму
20.4. Найдите зависимость между натуральными n и А, если
где а /= 0, 1, -1.
20.5. Найдите коэффициент при хn в разложении
(1 + x + 2х^2 + ... + пхn)^2.
20.6. Решите неравенство
|x– 2х^2 + 4х^3 - 8х4 + ... + (-2)n– 1хn + ...| < 1.
20.7. Найдите сумму
Sn = 1 · 1! + 2 · 2! + 3 · 3! + ... + n · n!.
20.8. Найдите сумму
Sn = x + 4х^3 + 7х5 + 10х7 + ... + (3n– 2)х2n– 1.
20.9. Найдите сумму
Sn4 = 14 + 24 + 34 + ... + n4,
считая известными формулы для Sn, Sn^2, Sn^3 (см. с. 103).
20.10. Натуральные числа разбиты на группы
(1), (2, 4), (3, 5, 7), (6, 8, 10, 12), (9, 11, 13, 15, 17), ...
Найдите сумму чисел в n– й группе.