Чтение онлайн

на главную - закладки

Жанры

Тени разума. В поисках науки о сознании
Шрифт:

Рис. 7.1. Нейрон и его соединение с другими нейронами посредством синапсов.

Таким образом — во всяком случае, пока, — не возникает сомнений в том, что изложенная картина может быть эффективно смоделирована численными методами, если допустить, что синаптические связи и их индивидуальная интенсивность со временем не изменяются. (Наличие случайных составляющих, разумеется, никаких проблем в смысле вычислимости не представляет, см. §1.9 ). В самом деле, несложно заметить, что вышеописанная нейронно-синапсовая схема (с постоянными синапсами и их интенсивностями) существенно эквивалентнасхеме компьютера (см. НРК, с. 392—396). Однако благодаря феномену так называемой пластичности мозга, интенсивность по крайней мере некоторых синаптических связей может время от времени изменяться — порой быстрее, чем за секунду, — а кроме того, изменяться могут и сами связи. Что ставит нас перед немаловажным вопросом: что же этими синаптическими

изменениями управляет?

В коннекционистских моделях (применяемых при разработке искусственных нейронных сетей) синаптические изменения описываются определенным вычислительным правилом. Это правило устанавливается таким образом, чтобы система могла в процессе работы повышать свою эффективность, сравнивая поступающую на ее вход извне информацию с некоторыми заранее заданными критериями. Простое правило такого типа предложил Дональд Хебб еще в 1949 году [ 193 ]. Современные коннекционистские модели {87} используют различные модификации (порой весьма значительные) все той же процедуры Хебба. Любая модель такого рода непременно должна иметь в своей основе хоть какое-нибудьчеткое вычислительное правило, поскольку выполняются эти модели на самых обычных компьютерах; см. §1.5 . Однако, в силу изложенной в первой части аргументации, никакая вычислительная процедура не может адекватно объяснить все операционные проявления человеческого сознательного понимания. Следовательно, нужно искать какой-то другой управляющий «механизм» — по крайней мере, для объяснения синаптических изменений, возможно, имеющих некоторое отношение к настоящей сознательнойдеятельности мозга.

Были выдвинуты и другие идеи; например, Джеральд Эдельман в своей книге «Прозрачный воздух, сверкающий огонь» [ 112 ] (и в более ранней трилогии [ 109 , 110 , 111 ]) предположил, что в мозге действуют не правила типа правила Хебба, а, скорее, некий вариант «дарвиновского» эволюционного принципа, позволяющий мозгу непрерывно повышать свою эффективность, управляя синаптическими связями посредством своеобразного естественного отбора, — при этом Эдельман указывает на весьма многозначительные параллели между своей моделью и процессом развития иммунной системой способности «распознавать» вещества. Особое значение в этой модели придается сложной роли нейромедиаторов и других химических соединений, задействованных в коммуникации между нейронами. Однако на сегодняшний день соответствующие процессы по-прежнему рассматриваются как классические и вычислимые. Вместе со своими коллегами Эдельман даже построил ряд устройств с компьютерным управлением (получивших названия DARWIN I, II, III, IV и т.д.), предназначенных для моделирования (с увеличением степени сложности) как раз той самой процедуры, которая, по его предположению, лежит в основе умственной деятельности. Однако тот факт, что управляющие функции в устройствах Эдельмана возложены на самый обычный универсальный компьютер, вполне недвусмысленно показывает, что и эта схема является исключительно вычислительной — просто здесь используется некая «восходящая» система правил. При этом совершенно не важно, какими именно деталями данная схема отличается от других вычислительных процедур. Она все равно принадлежит к той категории, что мы обсуждали в первой части, — см. §1.5 , а также §3.9 и краткое изложение аргументации главы 3 в воображаемом диалоге в §3.23 . Одного лишь этого диалога достаточно для того, чтобы убедиться в полном неправдоподобии любого утверждения о том, что модель, основанная только на подобного рода принципах, может иметь какое-то отношение к действительному функционированию сознательного разума.

Для того, чтобы избавиться от этих «пут» вычислительности, необходимо найти какой-нибудь другой механизм управления синаптическими связями — причем каким бы этот механизм ни был, он, по всей видимости, должен задействовать некий физический процесс, важную роль в котором играет та или иная форма квантовой когерентности. Если этот процесс окажется в каком-либо существенном отношении похожим на действие иммунной системы, то, значит, и иммунная система работает на квантовых эффектах. Возможно, какие-то процессы в работе иммунного механизма распознавания и впрямь носят существенно квантовый характер — как, в частности, утверждает Майкл Конрад [ 57 , 58 , 59 ]. Меня бы это не удивило, однако в эдельмановской модели мозга возможному участию квантовых процессов в работе иммунной системы места не нашлось.

Впрочем, даже если когерентные квантовомеханические эффекты каким-то образом замешаны в управлении синаптическими связями, все же трудно предположить, что и распространение нервных импульсов может быть связано с чем-то существенно квантовомеханическим. Иначе говоря, совершенно неясно, какую пользу можно извлечь из рассмотрения квантовой суперпозиции, в которой нейрон одновременно и возбужден, и заторможен. Нервные сигналы представляются нам явлениями вполне макроскопическими — во всяком случае, достаточно макроскопическими для того, чтобы такая картина выглядела крайне неправдоподобно, даже несмотря на тот факт, что собственно передача весьма хорошо изолирована от окружения благодаря плотному слою миелина, покрывающему нервные окончания. Согласно критерию, предложенному в §6.12 ( OR), следует ожидать, что при возбуждении нейрона объективная редукция состояния происходит очень быстро — не потому, что имеет место значительное перемещение масс (его там даже по минимально требуемым стандартам далеко недостаточно), а потому, что распространяющееся вдоль нерва электрическое поле (порождаемое нервным сигналом), скорее всего, не остается «незамеченным» окружающими

нерв тканями мозга. Это поле возмущает случайным образом весьма значительный объем вещества окружения — вполне достаточный, как мне представляется, для того, чтобы удовлетворить критерию срабатывания процедуры OR(из §6.12 ) почти сразу же после возникновения сигнала. Таким образом, сохранение в течение длительного времени квантовых суперпозиций возбуждения и торможения нейрона вряд ли возможно.

7.3. Квантовые вычисления

Свойство возбужденного нейрона возмущать окружение всегда представлялось мне донельзя неудобным — оно никак не вписывалось в то предварительное предположение, которое я пытался обосновать в НРК и в рамках которого квантовая суперпозиция одновременного возбуждения и торможения семейств нейронов была, как мне казалось, действительно необходимой. Согласно нашему новому критерию редукции состояний ( OR), для редукции требуется еще меньшее возмущение окружения, чем в прежнем описании, и в возможность сохранения таких суперпозиций в течение сколько-нибудь заметного времени поверить еще сложнее. А собственно идея тогда заключалась в следующем: если бы возможно было выполнять несколько отдельных «вычислений» в суперпозиции в нескольких одновременно возбуждающихся нейронных структурах, то резонно было бы предположить, что в мозге вместо «обычных» тьюринговых вычислений выполняется нечто вроде вычислений квантовых. Несмотря на кажущуюся невозможность выполнения квантовых вычислений на этом уровне функционирования мозга, будет полезно познакомиться с некоторыми их аспектами подробнее.

Квантовое вычисление — теоретическая концепция, основы которой разработали Дэвид Дойч [ 83 ] и Ричард Фейнман [ 120 , 121 ] (см. также [ 25 ] и [ 6 ]) и которая в настоящее время активно исследуется многими учеными. Основная идея заключается в распространении классического понятия машины Тьюринга на соответствующее квантовое устройство. Как следствие, все выполняемые такой расширенной «машиной» операции должны подчиняться квантовым законам — т.е. законам, по которым живут системы квантового уровня (с возможностью суперпозиций). Так, эволюция устройства происходит преимущественно под действием процедуры U, причем существенным свойством этого самого действия является как раз сохранение наличествующих суперпозиций. Процедура Rполучает «право голоса», как правило, лишь в концеоперации, когда система «измеряется» с целью узнать результат вычисления. Вообще говоря (хотя не все это осознают), в процессе вычисления процедуру Rнеобходимо время от времени вызывать дополнительно для того, чтобы проверить, не завершилось ли оно.

Выяснилось, что, хотя квантовый компьютер и не имеет сверхспособностей, в принципенедоступных для традиционного вычисления по Тьюрингу, в некоторых классах задач квантовое вычисление превосходит тьюрингово вычисление в смысле теории сложности([ 83 ]). То есть при решении таких задач квантовый компьютер оказывается в принципе намного быстрее, нежели компьютер обычный, — но и только. Ряд интересных (хотя и несколько искусственных) задач такого типа, при решении которых квантовый компьютер оказывается победителем, приводят, в частности, Дойч и Йожа [ 88 ]. Более того, как недавно показал Питер Шор, с помощью квантового вычисления можно решить (за полиномиальное время) актуальную задачу факторизации больших целых чисел.

«Стандартное» квантовое вычисление использует обычные правила квантовой теории, согласно которым в течение практически всей операции система эволюционирует под действием процедуры U, a Rвмешивается в процесс на строго определенных этапах. В такой процедуре нет ничего «невычислимого» в смысле обычной«вычислимости», так как U— вычислимая операция, a R— чисто вероятностная процедура. Все, что в принципе можно получить с помощью квантового компьютера, можно в принципе получить и с помощью соответствующей машины Тьюринга, снабженной генератором случайных чисел. Таким образом, согласно представленным в первой части книги аргументам, даже квантовый компьютер не способен выполнять операции, требуемые для человеческого сознательного понимания. Остается надеяться лишь на то, что подлиннаяневычислимость скрывается где-то за тонкими особенностями процесса, в действительностипроисходящего в момент «кажущейся» редукции вектора состояния, потому что во временно заменяющей этот реальный процесс случайной процедуре Rникакой невычислимости нет. Таким образом, полная теория гипотетической процедуры ORбудет по необходимости носить существенно невычислимыйхарактер.

Предложенная в НРК идея основывалась на предположении, что в мозге возможны достаточно длительные тьюринговы вычисления в суперпозиции, прерываемые время от времени неким невычислимым действием, которое можно объяснить лишь в терминах того нового физического процесса (например, OR), какой придет на смену редукции R. Теперь, когда на такие суперпозиции нейронных вычислений мы больше рассчитывать не можем по причине слишком сильного возмущения окружения проходящими по нейрону импульсами, становится непонятно, каким образом можно здесь хотя бы воспользоваться самой идеей стандартного квантового вычисления, не говоря уже о какой-либо модификации этой процедуры посредством замены Rна некий гипотетический невычислимый процесс (например, OR). Однако, как мы очень скоро убедимся, существует еще одна, весьма многообещающая возможность. Для того чтобы понять, что она собой представляет, нам необходимо более подробно рассмотреть биологическое устройство клеток мозга.

Поделиться:
Популярные книги

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Виконт. Книга 4. Колонист

Юллем Евгений
Псевдоним `Испанец`
Фантастика:
фэнтези
попаданцы
аниме
7.50
рейтинг книги
Виконт. Книга 4. Колонист

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи

Запретный Мир

Каменистый Артем
1. Запретный Мир
Фантастика:
фэнтези
героическая фантастика
8.94
рейтинг книги
Запретный Мир

Ты предал нашу семью

Рей Полина
2. Предатели
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты предал нашу семью

Цеховик. Книга 2. Движение к цели

Ромов Дмитрий
2. Цеховик
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Цеховик. Книга 2. Движение к цели

Сила рода. Том 3

Вяч Павел
2. Претендент
Фантастика:
фэнтези
боевая фантастика
6.17
рейтинг книги
Сила рода. Том 3

Проданная невеста

Wolf Lita
Любовные романы:
любовно-фантастические романы
5.80
рейтинг книги
Проданная невеста

Волк 7: Лихие 90-е

Киров Никита
7. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 7: Лихие 90-е

Падение Твердыни

Распопов Дмитрий Викторович
6. Венецианский купец
Фантастика:
попаданцы
альтернативная история
5.33
рейтинг книги
Падение Твердыни

Приручитель женщин-монстров. Том 9

Дорничев Дмитрий
9. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 9

Ночь со зверем

Владимирова Анна
3. Оборотни-медведи
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Ночь со зверем

Я – Орк. Том 6

Лисицин Евгений
6. Я — Орк
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 6

Совок-8

Агарев Вадим
8. Совок
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Совок-8