Чтение онлайн

на главную

Жанры

Тени разума. В поисках науки о сознании
Шрифт:

Ключевым в этих процедурах является математический объект, называемый матрицей плотности. Понятие матрицы плотности играет в квантовой теории весьма важную роль, и именно она, а не вектор состояния, лежит в основе большинства стандартных математических описаний процесса измерения. Центральную роль отводит матрице плотности и мой, менее традиционный, подход, особенно в том, что касается ее связи со стандартными FAPP-процедурами. По этой причине нам, к сожалению, придется углубиться в математический формализм квантовой теории несколько далее, нежели было необходимо прежде. Надеюсь, что читателя-неспециалиста такая перспектива не отпугнет. Даже при отсутствии полного понимания, мне думается, любому читателю будет полезно хотя бы бегло просматривать математические рассуждения по мере их появления — несомненно, со временем придет и осмысление. Это стало бы существенным подспорьем для понимания некоторых из дальнейших аргументов и тонкостей, сопровождающих поиски ответа на вопрос, почему

нам действительно и насущно необходима усовершенствованная теория квантовой механики.

В отличие от отдельного единичного вектора состояния, матрицу плотности можно рассматривать как представление комбинации вероятностей нескольких возможных альтернативныхвекторов состояния. Говоря о «комбинации вероятностей», мы подразумеваем лишь, что существует некоторая неопределенность в отношении действительного состояния системы, при этом каждому из возможных альтернативных векторов состояния поставлена в соответствие некоторая вероятность — самая обычная классическая вероятность, выраженная самым обычным вещественным числом. Однако матрица плотности вносит в это описание некоторую путаницу (заложенную изначально), поскольку не отличает классическиевероятности, фигурирующие в вышеупомянутой взвешенной вероятностной комбинации, от вероятностей квантовомеханических, возникающих в результате процедуры R. Дело в том, что операционными методами различить эти вероятности невозможно, поэтому в операционном же смысле вполне уместным представляется математическое описание (матрица плотности), которое такого различия неделает.

Как выглядит это математическое описание? Я не стану углубляться в ненужные здесь подробности, лишь вкратце изложу основные концепции. Идея матрицы плотности, вообще говоря, весьма изящна [43] . Начать с того, что вместо каждого отдельного состояния | мы используем объект вида

| |.

Что означает такая запись? Не прибегая к точному математическому определению, которое для нас сейчас несущественно, можно сказать, что это выражение представляет собой особого рода «произведение» (точнее, вид тензорного произведения, см. §5.15 ) вектора состояния | и «комплексно сопряженного» ему вектора |. Вектор состояния | мы полагаем нормированным(т.е. | = 1); тогда выражение | |однозначно определяется физическим состоянием, представленным вектором | (поскольку не зависит от изменений фазового множителя | e i| , см. §5.10 ). В системе обозначений Дирака исходный вектор | называется «кет»-вектором, а соответствующий ему |— «бра»-вектором. Бра-вектор |и кет-вектор | могут образовывать и скалярное произведение («bra-ket» [44] ):

43

Эта идея была предложена в 1932 году выдающимся венгерско-американским математиком Джоном фон Нейманом. Ему же, главным образом, мы обязаны теорией, опиравшейся на первопроходческие труды Алана Тьюринга и положившей начало развитию электронных компьютеров. Кроме того, фон Нейман стоял у истоков теории игр (см. ссылку в примечании {46}) и, что ближе к теме нашего разговора, первым четко определил две квантовые процедуры, которые я обозначил здесь буквами « U» и « R».

44

Созвучно английскому bracket«скобка». — Прим. перев.

|,

с таким обозначением мы уже встречались в §5.12 . Значением скалярного произведения является самое обычное комплексное число, тогда как тензорное произведение | | в матрице плотности дает более сложный математический «объект» — элемент некоторого векторного пространства.

Перейти от непонятного «объекта» к обычному комплексному числу позволяет особая математическая операция, называемая вычислением следа(или суммы элементов главной диагонали) матрицы. Для простого выражения | | эта операция сводится к простой перестановке членов, дающей в результате скалярное произведение:

СЛЕД(| |) = | .

В случае суммы членов «след» вычисляется линейно: например,

СЛЕД ( z| | + w| |) = z | + w | .

Я не стану в подробностях выводить все математические свойства таких объектов,

как |и | |, однако кое о чем упомянуть стоит. Во-первых, произведение | | подчиняется тем же алгебраическим правилам, что перечислены в §5.15 для произведения | | (за исключением последнего, которое к данному случаю неприменимо):

( z|) | = z( | |) = |( z |),

( | + |) | = | | + | |,

|( | + |) = | | + | |.

Следует также отметить, что бра-вектор z' |является комплексным сопряженным кет-вектора z| (поскольку число z' есть комплексное сопряженное комплексного числа z, см. §5.8 ), а сумма |+ |— комплексным сопряженным суммы | + |.

Допустим, нам нужно составить матрицу плотности, представляющую некоторую комбинацию вероятностей нормированных состояний, скажем, | и | ; вероятности, соответственно, равны aи b. Правильная матрица плотности в данном случае будет иметь вид

D = a| |+ b| |.

Для трех нормированных состояний | , | , | с соответствующими вероятностями a, b, cимеем

D = a| |+ b| | + c| |,

и так далее. Из того, что вероятности всех альтернативных вариантов должны в сумме давать единицу, можно вывести важное свойство, справедливое для любой матрицы плотности:

СЛЕД( D ) = 1.

Как же использовать матрицу плотности для вычисления вероятностей, результатов измерения? Рассмотрим сначала простой случай примитивного измерения. Спросим, находится ли система в физическом состоянии | ( ДА) или в ином состоянии, ортогональном | ( НЕТ). Само измерение представляет собой математический объект (так называемый проектор), очень похожий на матрицу плотности:

E = | |.

Вероятность pполучения ответа ДАопределяется из выражения

p = СЛЕД( DE ),

где произведение DE само представляет собой объект, подобный матрице плотности. Оно вычисляется с помощью несложных алгебраических правил, необходимо лишь соблюдать порядок «умножений». Например, для вышеприведенной двучленной суммы D = a| |+ b| | имеем

DE = ( a| |+ b| |) | |= a| | |+ b| | |= ( a |)| |+ ( b | )| |.

Члены | и | могут «коммутировать» с другими выражениями, так как они представляют собой просто числа, порядок же таких «объектов», как | и |необходимо тщательно соблюдать. Далее получаем (учитывая, что zz' = | z 2|, см. §5.8 )

Поделиться:
Популярные книги

Live-rpg. эволюция-3

Кронос Александр
3. Эволюция. Live-RPG
Фантастика:
боевая фантастика
6.59
рейтинг книги
Live-rpg. эволюция-3

Я – Орк

Лисицин Евгений
1. Я — Орк
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я – Орк

Беглец

Бубела Олег Николаевич
1. Совсем не герой
Фантастика:
фэнтези
попаданцы
8.94
рейтинг книги
Беглец

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Князь Мещерский

Дроздов Анатолий Федорович
3. Зауряд-врач
Фантастика:
альтернативная история
8.35
рейтинг книги
Князь Мещерский

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Делегат

Астахов Евгений Евгеньевич
6. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Делегат

Болотник 2

Панченко Андрей Алексеевич
2. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 2

Возвышение Меркурия. Книга 17

Кронос Александр
17. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 17

Курсант: Назад в СССР 11

Дамиров Рафаэль
11. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 11

Я – Орк. Том 4

Лисицин Евгений
4. Я — Орк
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 4

Восход. Солнцев. Книга XI

Скабер Артемий
11. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга XI

Мимик нового Мира 4

Северный Лис
3. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 4