Тени разума. В поисках науки о сознании
Шрифт:
вероятность ответа ДА= | w| 2,
вероятность ответа НЕТ= | z| 2.
Поскольку зеркало полупрозрачно(как в исходном примере, рассмотренном в §5.7 , где теперешним | и | соответствовали состояния | B и i| C), каждая из этих вероятностей равна 1/2, т.е. | w| = | z| = 1/2.
Детектор находится первоначально в состоянии | , которое по
w| Д + z| Н |
(все состояния мы полагаем нормированными). Предположим, однако, что детектор, будучи макроскопическим объектом, сразу же вступает во взаимодействие с окружением, — частью такого окружения можно считать и «сбежавший» фотон (первоначально в состоянии |), поглощенный стеной лаборатории. Как и прежде, детектор, в зависимости от того, зарегистрировал он фотон или нет, переходит в одно из своих новых состояний ( | Д или | Н. соответственно), однако в процессе перехода он по-разному возмущает окружение. Состояние окружения, сопутствующее состоянию детектора | Д, обозначим через | Д, а состояние окружения, сопутствующее состоянию детектора | Н — через | Н (эти состояния мы также полагаем нормированными, но не обязательно ортогональными). Полное состояние сцепленной системы можно записать так:
w| Д | Д + z| Д | Н.
До сих пор физик в процессе не участвовал, однако теперь он собирается осмотреть детектор, чтобы узнать, какой результат тот зафиксировал ( ДАили НЕТ). Каким образом физик может оценить квантовое состояние детектора в момент, непосредственно предшествующий осмотру? Как и наблюдатель, измерявший в предыдущем параграфе спин правой частицы, наш физик резонно воспользуется матрицей плотности. Можно предположить, что никакого измерения окружения с целью выяснить, находится онов состоянии | Д или | Н, в действительности не проводилось — точно так же, как никто не измерял спин левой частицы в описанной выше ЭПР-паре. Соответственно, матрица плотности и в самом деле даст адекватное квантовое описание детектора.
Какова эта матрица плотности? Рассуждая стандартным образом {78} (который основывается на некоем частном способе моделирования упомянутого окружения —• исходя при этом из неких не вполне обоснованных допущений, таких, например, как допущение о несущественности корреляций ЭПР-типа), приходим к заключению, что матрица плотности в данном случае должна очень быстро принять вид, очень хорошее приближение к которому дает следующее выражение:
D = a| Д Д |+ b| Н Н |,
где
a = | w| 2и b= | z| 2.
Эту
Думаю, здесь следует проявить некоторую осторожность. Матрица плотности D и в самом деле позволяет физику вычислить необходимые ему значения вероятностей, если предположить, что альтернатив всего две: либо | Д, либо | Н. Но из наших рассуждений такое предположение никоим образом не следует. Вспомним из предыдущего параграфа, что матрицы плотности, как комбинации вероятностей состояний, допускают множество альтернативных интерпретаций. В частности, поскольку зеркало полупрозрачно, мы имеем здесь в точности такую же матрицу плотности, как и та, какую мы получили выше для частицы со спином 1/2:
D = 1/2 | Д Д |+ 1/2 | Н Н |.
Можно записать ее иначе; скажем, так:
D = 1/2 | P P |+ 1/2 | Q Q |,
где | P и | Q — два других возможных ортогональных состояния детектора (что представляет собой, надо сказать, совершенную нелепость с точки зрения классической физики), причем
| P = ( | Д + | Н)/2 и | Q = ( | Д– | Н)/2.
Тот факт, что наш физик полагает, будто состояние его детектора описывается матрицей плотности D , никак не объясняет, почемуон всегда обнаруживает детектор либо в состоянии ДА(что соответствует | Д), либо в состоянии НЕТ( | Н). Потому что совершенно такую матрицу плотности он получил бы, если состояние системы представляло собой равновесную вероятностную комбинацию, по классическим меркам, нелепостей | P и | Q (описывающих, соответственно, квантовые линейные суперпозиции « ДА плюс НЕТ» и « ДА минус НЕТ»)!