Тени разума. В поисках науки о сознании
Шрифт:
СЛЕД( DE ) = ( a |) | + ( b | ) | = a| || 2+ b| | | 2.
Напомню (см. §5.13 ), что величины | || 2и | | | 2представляют собой квантовыевероятности соответствующих конечных состояний | и |,
В случае более общего измерения типа «да/нет» рассуждение в целом не изменяется, только вместо определенного выше проектора «lb» используется проектор более общего вида
E = | |+ | |+ … + | |,
где |, |, …, | — взаимно ортогональные нормированные состояния, заполняющие пространство ДА– состояний в гильбертовом пространстве. Как мы видим, проекторы обладают общим свойством
E 2= E .
Вероятность получения ответа ДАпри измерении, определяемом проектором E , системы с матрицей плотности D равна следу ( DE ) — в точности, как и в предыдущем примере.
Отметим важный факт: искомую вероятность можно вычислить, если нам всего-навсего известны матрица плотности и проектор, описывающий измерение. Нам не нужно знать, каким именно образом из индивидуальных состояний была составлена матрица плотности. Полная вероятность получается сама собой в виде соответствующей комбинации классических и квантовых вероятностей, а нам не приходится беспокоиться, какая ее часть откуда взялась.
Рассмотрим повнимательнее это любопытное переплетение классических и квантовых вероятностей в матрице плотности. Допустим, например, что у нас имеется частица со спином 1/2, и мы абсолютно не уверены, в каком спиновом состоянии (нормированном) она в данный момент пребывает — |^ или |V. Предположив, что соответствующие вероятности этих состояний равны 1/2 и 1/2, построим матрицу плотности
D = 1/2 |^^ |+ 1/2 |VV |.
Простое вычисление показывает, что в точности такая же матрица плотности D получается в случае комбинации равных вероятностей (1/2 и 1/2) любых других ортогональных возможностей — скажем, состояний (нормированных) |-> и |<-, где |-> = ( |^ + |V)/2 = ( |^ - |V)/2:
D = 1/2 |– >– > |+ 1/2 |<-<- |.
Допустим, мы решили измерять спин частицы в направлении «вверх», т.е. соответствующий проектор имеет вид
E = |^V |.
Тогда для вероятности получения ответа ДА, согласно первому описанию, находим
СЛЕД( DE ) = 1/2 |^ |^| 2+ 1/2 |V|^| 2= 1/2 x 1 2+ 1/2 x 0 2= 1/2,
где
СЛЕД( DE ) = 1/2 |– > |^| 2+ 1/2 |<-|^| 2= 1/2 x (1/2) 2+ 1/2 x (1/2) 2= 1/4 + 1/4 = 1/2;
правое |-> и левое |<- состояния здесь не являются ни ортогональными, ни параллельными измеряемому состоянию |^, т.е. на деле |-> |^| = |<-|^| = 1/2.
Хотя полученные вероятности оказываются одинаковыми (как, собственно, и должно быть, поскольку одинаковы матрицы плотности), физические интерпретации этих двух описаний совершенно различны. Мы согласны с тем, что физическая «реальность» любой ситуации описывается некоторымвполне определенным вектором состояния, однако существует классическая неопределенность в отношении того, каким окажется этот вектор в действительности. В первом предложенном описании атом находится либо в состоянии |^, либо в состоянии |V, и мы не знаем, в каком из двух. Во втором описании — либо в состоянии |->, либо в состоянии |<-, и мы снова не знаем, в каком именно. Когда мы в первом случае выполняем измерение с целью выяснить, не находится ли атом в состоянии |^, мы имеем дело с самыми обычными классическими вероятностями: вероятность того, что атом находится в состоянии |^, совершенно очевидно равна 1/2, и больше тут говорить не о чем. Когда мы задаем тот же вопрос во втором случае, измерению подвергается уже комбинация вероятностей состояний |-> и |<-, и каждое из них вносит в полную вероятность свой классический вклад 1/2 помноженный на свои же квантовомеханический вклад 1/2, что дает в итоге 1/4 + 1/4 = 1/2. Как можно видеть, матрица плотности ухитряется сосчитать нам верную вероятность вне зависимости оттого, какие классические и квантовомеханические доли эту вероятность, по нашему предположению, составляют.
Приведенный выше пример является в некотором роде особым, поскольку так называемые «собственные значения» матрицы плотности в этом случае оказываются вырожденными (в силу того, что обе классические вероятности здесь — 1/2 и 1/2 — одинаковы); именно эта «особость» и позволяет нам составить более одного описания в комбинациях вероятностей ортогональных альтернатив. Впрочем, для наших рассуждений это ограничение несущественно. (А упомянул я о нем исключительно для того, чтобы избежать упреков в невежестве со стороны возможно читающих эти строки специалистов.) Всегда можно представить, что комбинация вероятностей охватывает гораздо большее число состояний, нежели просто набор взаимно ортогональных альтернатив. Например, в вышеописанной ситуации мы вполне могли бы составить очень сложные вероятностные комбинации множества возможных различных направлений оси спина. Иначе говоря, существует огромное количество совершенно различных способов представить одну и ту же матрицу плотности в виде комбинации вероятностей альтернативных состояний, и это верно для любыхматриц плотности, а не только для тех, собственные значения которых вырожденны.
6.5. Матрицы плотности для ЭПР-пар
Перейдем к ситуациям, описание которых в терминах матриц плотности представляется особенно уместным — и в то же время выявляет один почти парадоксальный аспект интерпретации такой матрицы. Речь идет об ЭПР-эффектах и квантовой сцепленности. Рассмотрим физическую ситуацию, описанную в §5.17 : частица со спином 0 (в состоянии | ) расщепляется на две частицы (каждая со спином 1/2), которые разлетаются вправо и влево, удаляясь на значительное расстояние друг от друга, в результате чего выражение для их совокупного (сцепленного) состояния принимает вид: