ВОЛШЕБНЫЙ ДВУРОГ
Шрифт:
– Да!
– сказал Илюша.
– Правда, очень просто! А что же это за кривая?
– Кривая эта называется квадратрисой. Это гораздо более хитрая кривая, чем те, с которыми древние геометры имели дело до нее. Следовательно, древним для решения этой задачи пришлось изобрести новую кривую. Именно это решение и вводит в ход рассуждения движущиеся линии, тогда как раньше речь шла только о соотношениях неподвижных линий. Говорят, философы были недовольны и считали, что это решение не геометрическое, а механическое. Но опыт показывал, что решение получается скоро и просто.
– 313 -
– Вот, значит, - добавил Асимптотос, - и выходит, что, заставив точку непрерывно двигаться и, полагая, что она, двигаясь, может начертить
– Однако имей в виду, - заметил Радикс, - что в руках Архимеда этот способ чертить кривые при помощи движущейся точки дал необыкновенный результат.
– Какой?
– Ты, наверно, знаешь, что такое граммофонная пластинка?
– Еще бы!
– отвечал Илья не без удивления.
– У нас их очень много.
– Очень хорошо - одобрил Радикс.
– А теперь скажи, пожалуйста, какую кривую описывает иголка звукоснимателя, когда она бежит по бороздке пластинки?
– Папа говорит, что это спираль...
– Верно. Так эту самую спираль и нашел Архимед. Она так и называется "спираль Архимеда". Точка чертит спираль.
– А как она чертит? Я понимаю, как иголка бежит по пластинке. Но как это получается с точкой?
– В проигрывателе пластинка вращается. Но в нашем опыте мы ее оставим неподвижной, а в центре укрепим отрезок прямой и, пользуясь нашими волшебными возможностями, прикажем отрезку: вращайся вокруг этой средней точки против часовой стрелки (это направление мы будем считать положительным), но при этом увеличивайся в длине в соответствии с углом, на который ты повернулся. Чтобы нам удобней отсчитывать вращение отрезка, мы направо от точки в середине проведем горизонтальную прямую и назовем ее полярной осью. Пока отрезок - радиус-вектор - будет еще лежать на полярной оси, угол его с ней равен нулю, а затем он будет увеличиваться. Итак, вперед!
– 314 -
Конус разбивается на маленькие цилиндры.
Усеченный конус и цилиндр.
Тотчас в полутьме возникло все, что заказал Радикс: в середине светилась оранжевая точка, а от нее направо шла розовая полярная ось. Что-то очень маленькое лежало на этой оси...
– А, Мнимий Радиксович! Мое почтение!
– воскликнул Илюша.
И Мнимий, возникший из средней точки, стал вращаться, постепенно вырастая, и своим кончиком чертить спираль Архимеда. Описав несколько витков, Мнимий исчез, а спираль так и осталась висеть в воздухе.
– Эта спираль, - сказал Коникос, - умеет делить как угодно любые углы. А с ее помощью Архимед даже построил очень точно длину, окружности.
– Длину окружности?
– воскликнул Илюша.
– Да ведь это что-то вроде квадратуры круга! Разве это можно?
– Для такой умницы спирали оказалось возможным, - произнес Коникос [25] .
–
25
1 О спиралях Архимеда можно прочесть в книге "Историко-математические исследования", выпуск VI. М., Гостехиздат, 1953, стр. 623-648; статья И. Г. Башмаковой (*) "Дифференциальные методы в работах Архимеда", § 3-6. См. Схолию Девятнадцатую.
– Как же это так?
– спросил Илюша.
– Ведь атомы - это касается физики и химии. А при чем здесь математика?
– 315 -
– Мы уже говорили о том, как связана математика с изучением природы, поэтому вполне естественно, что человек, который пришел к убеждению, что весь мир состоит из атомов, начинает думать и о том, что геометрические образы, то есть кривые, площади, объемы, тоже как бы составлены из некоторых элементарных частиц. Кроме того, в таком деле играет очень большую роль опыт. В одном своем сочинении Архимед рассказывает, что Демокрит нашел объем конуса и показал, что его объем равен одной трети объема цилиндра с тем же основанием и той же высотой. Проверить это на практике, то есть путем опыта, ровно ничего не составляет.
Любой слесарь сделает тебе цилиндр, то есть ведерко, и конус.
Налей в ведерко воды, смеряй конусом, сколько ее там, и найдешь это соотношение. Вот что говорит тебе опыт. Если не поверишь первому опыту, можешь повторить его, сделав цилиндр и конус, например, с другим основанием. И снова ты убедишься, что соотношение это правильно. Необходимо только найти логический способ, которым можно это доказать без участия слесаря.
– Значит, Демокрит раньше теоремы своей уже знал это решение?
– спросил заинтересованный Илюша.
– Возможно, что и так. Возможно и обратное. Может быть, он сперва вывел свою теорему, а потом проверил ее на опыте. Но еще более вероятно, что он узнал ее от слесаря, кузнеца или медника, которые благодаря своему ремеслу сталкивались с такого рода соотношениями уже не раз. Кстати сказать, теорема эта была доказана со всей необходимой строгостью гораздо позже Демокрита. Весь вопрос заключался в том, чтобы вывести это - такое простое на вид -соотношение теоретически. И я не знаю, с чего начал Демокрит: атомистическая ли теория привела его к этому решению или это решение привело его к мысли об атомах.
– Как это интересно!
– воскликнул Илюша.
– Значит, у них и физика, и философия, и геометрия - все было вместе?
– Конечно. Над входом в одну греческую академию было написано: "Да не входит сюда никто, кто не знает геометрии!"
– А как Демокрит решил эту задачу?
– Решил он ее вот как. Он предположил, что конус можно весь разрезать на очень тоненькие кружочки, если резать параллельно основанию, то есть на цилиндрики с очень малой высотой. Правило, по которому изменяется диаметр кружков, вывести не очень трудно. Мы этого пока еще делать не будем, так как сейчас речь не о выводе формулы, а о способе рассуждения, с помощью которого ее можно вывести. Теперь допустим, что цилиндриков не только очень много и толщина их ничтожно мала, но что число их безгранично увеличивается, а толщина тем же порядком уменьшается. Конус заменяется ступенчатой фигурой из кружков. Конечно, это ступенчатое тело не есть конус, но чем дальше я буду уменьшать толщину кружков, которых будет накопляться все больше и больше, тем меньше это ступенчатое тело будет отличаться от конуса.