ВОЛШЕБНЫЙ ДВУРОГ
Шрифт:
– 329 -
Парабола третьего порядка.
Один вещественный корень и два комплексных.
Геометрия и алгебра как бы слились в одну науку, и их сила увеличилась от этого во много раз. Алгебра позволяет преобразовывать уравнения, выражающие геометрические соотношения, а геометрия наглядно представляет смысл многих алгебраических зависимостей и преобразований. Можно теперь высказывать очень странные на первый взгляд суждения, например, что у квадратного трехчлена есть ось или фокус. И ты будешь прав: действительно у геометрического образа квадратного трехчлена, то есть
– 330 -
А есть ли смысл в таких "странных" замечаниях? Представь себе, что есть, и вот пример. Что это, собственно, означает, что у квадратного уравнения имеются два корня? Это значит, что парабола на графике дважды пересекает ось абсцисс, или ось иксов, как мы это выяснили в Схолии Двенадцатой. Что значит, что у квадратного уравнения нет вещественных корней? Это значит, что соответствующая на графике данному квадратному трехчлену парабола совсем не пересекает оси иксов - она вся находится либо выше этой оси, либо ниже ее. Если взять уравнение третьей степени:
х3 + Ах2 + Вх + С = 0,
то у него должно быть три корня, например:
x1 = а; х2 = b; х3 = с,
теперь можно составить такое уравнение:
(x - а) (х - b) (х - с) = x3– х2 (а + b + с) +
+ х (ab + ас + bc) - abc = 0,
откуда следует, что коэффициенты уравнения третьей степени связаны с корнями следующим образом:
А = - (а + b + с); В = ab + ас + bc; С = - abc.
Три вещественных корня.
– 331 -
Рассмотрим теперь, что обозначает геометрически утверждение о трех корнях. Если мы напишем
у = х3 + Ах2 + Вх + С,
то будем иметь дело с кривой, которая сперва поднимается вверх, доходит до некоторого максимума, потом опускается, доходит до некоторого минимума, а затем снова начинает подниматься. Разумеется, все это может идти и обратным порядком (то есть сперва будет минимум, а потом максимум), в зависимости от знака перед х3 (все эти кривые называются кубическими параболами, параболами третьего порядка). Но если кривая имеет такую форму, то ясно, что она либо пересекает ось иксов трижды, и тогда все три корня кубического уравнения вещественны, либо пересекает ее только однажды, и тогда у него есть лишь один вещественный корень и два других - комплексные. Все рассуждения чрезвычайно упрощаются. Что же касается тех преимуществ, которые дает алгебра, то легко рассудить, что гораздо проще написать
х2 = аb.
чем выполнить построением и записать такое утверждение:
"Квадрат, построенный на отрезке, длина которого равняется х, равновелик прямоугольнику, одна сторона которого равна а, а другая равна b". Тут надо вот еще что иметь в виду. Геометрия древних, как отчасти и геометрия вообще, отличается тем, что там нет общих способов и чуть ли не каждая задача решается по-своему. Греки проявили в таких решениях просто гениальное остроумие, но им не хватало того, что ныне мы называем общностью. Они сделали все, что было возможно при отсутствии общих методов, а далее вынуждены были остановиться. Труды Архимеда были замечательны еще тем, что он в связи с развитием в его время естественных наук (особенно астрономии) обратил внимание на измерение и вычисление, но и у него общие методы не выработаны, а только намечены. Труды средневековых алгебраистов и математиков эпохи Возрождения много сделали для объединения и систематизации математической работы. Декарту же вместе с Ферма посчастливилось, соединив воедино геометрию с алгеброй, дать математикам в руки способ (метод) для рассмотрения и решения труднейших задач, где геометрия и алгебра помогают друг другу. Именно метод координат и аналитическая геометрия помогли решить одну замысловатую задачу, над которой математики бились с давних
– 332 -
– А какая это задача?
– спросил Илюша.
– Это была знаменитая задача о проведении касательной. А построить касательную к окружности нетрудно.
Касательная к окружности перпендикулярна к радиусу.
– Конечно, - отвечал Илюша, - потому что эта касательная перпендикулярна к радиусу.
– Правильно. Ну, а как ты проведешь касательную к любой другой кривой? Ну, например, к той же параболе? Или к кривой обратных величин, то есть к гиперболе? У параболы, например, нет радиуса.
Илюша задумался.
– А что, если сделать так. Например, надо провести касательную к данной точке параболы. Я начерчу окружность, очень похожую на параболу на этом ее кусочке, вроде тех кругов, которыми Коникос мерил кривизну. А к окружности касательную провести ничего не стоит.
– Представь себе, что и мысль Декарта шла примерно таким же образом. Нужно тебе сказать, что и до Декарта математики проводили касательные к различным кривым, но только у них не было общего правила для этого. Перпендикуляр к касательной, как мы уже говорили в Схолии Четырнадцатой, называется нормалью кривой в данной точке. Так вот Декарт и нашел общее правило для построения нормалей. А отсюда уже не так-то трудно перейти и к самим касательным.
Кривая сначала поднимается (ордината ее растет), и касательная образует с положительным направлением оси абсцисс острый угол α
Кривая затем опускаетсся (ордината ее убывает), и касательная образует с полжительным направлением оси абсцисс тупой угол β
– 333 -
– Это интересно, - сказал Илюша.
– Но разве это так важно - уметь провести касательную к любой кривой?
В точке, соответвтсующей х, кривая достигает максимума и касательная становится параллельной оси абсцисс.
Чем скорее растет ордината кривой, тем больше угол α и его тангенс.
– Сперва казалось, что это просто одна из трудных геометрических задач. Однако Декарт во второй книге своей "Геометрии" писал:
"Я готов даже сказать, что эта задача является самой полезной и обладает наибольшей общностью не только из тех задач, которые мне известны, но даже изо всех тех, которые мне хотелось когда бы то ни было узнать".
Кеплер в своем сочинении о стереометрии винных бочек отметил некоторые особые свойства кривых, которые тесно связаны с касательными их. Мы вот сейчас говорили о том, что у кубической параболы есть максимум и минимум. Если ты внимательно посмотришь на график этой кривой, то заметишь, что ордината этой параболы сперва растет очень скоро, а потом все медленнее и медленнее. В точке максимума ее рост прекращается, а потом начинает падать.
– Так, - сказал Илюша.
– А с минимумом наоборот: падает, падает, потом останавливается в точке минимума, а потом снова начинает расти.
– Молодец!
– похвалил Радикс.
– Кое-как соображаешь.
Чем скорее растет ордината кривой, тем больше угол а и его тангенс.
– 334 -
– Кое-как могу, когда не очень трудно, - отвечал мальчик, - да и то потому, что ты помогаешь.
– Отчего же и не помочь человеку, если он старается разобраться в том, что ему объясняют! Ну, а теперь пораскинь-ка мозгами и ответь мне на такой вопрос: что будет делать касательная к этой кривой, если я буду строить ее для различных точек кубической параболы и на чертеже брать эти точки одну за другой слева направо до максимума и после него?