Чтение онлайн

на главную

Жанры

Физика в примерах и задачах
Шрифт:

При испускании фотона свободно движущимся атомом импульс атома изменяется, поскольку испущенный фотон обладает импульсом. Следовательно, кинетическая энергия атома также меняется, и энергия фотона h' испущенного движущимся атомом, отличается от h вследствие изменения кинетической энергии атома.

На основании закона сохранения энергии

h'

h

=

p^2

2m

p^2

2m

,

(1)

где p - импульс атома массы m до испускания фотона, p - после испускания.

Рис. 4.1.

Импульс атома до излучения p равен векторной сумме импульса p после излучения и импульса фотона pф

Начальный и конечный импульсы атома можно связать с импульсом испускаемого фотона pф с помощью закона сохранения импульса (рис. 4.1):

p

=

p

+

p

ф

.

(2)

Перенося pф в равенстве (2) в левую часть, возводя полученное равенство в квадрат и учитывая, что импульс фотона крайне мал по сравнению с импульсом излучающего атома, получаем

p^2

2pp

ф

cos

p^2

.

(3)

С помощью (3) соотношение (1) можно переписать в виде

h'

h

=

p

m

p

ф

cos

.

(4)

Как записать выражение для импульса фотона pф? Так как импульс электромагнитного поля связан с энергией поля W соотношением W=pc, а энергия испущенного фотона равна h', то импульс этого фотона есть

p

ф

=

h'

c

(5)

Подставляя (5) в (4) и учитывая, что p/m есть скорость движения v излучающего атома, находим

'

=

'

v

c

cos

,

откуда

'

=

1

v

cos

1

v

cos

c

c

(6)

с точностью до членов порядка v/c Из этой формулы следует приведённое в условии соотношение

=

v

c

cos

.

Обратим теперь внимание на следующее обстоятельство. Если в формуле, определяющей сдвиг частоты, положить v=0, то получается . Означает ли это, что свет, излучаемый свободным неподвижным атомом, имеет такую же частоту, как и свет, излучаемый «закреплённым» атомом? Даже из интуитивных соображений ясно, что так быть не может из-за явления отдачи: закон сохранения импульса требует, чтобы в результате излучения фотона свободный атом пришёл в движение. В полученной выше приближённой формуле явление отдачи не учтено, так как при её выводе, переходя от (2) к (3), мы пренебрегали импульсом фотона, считая его малым по сравнению с импульсом излучающего атома. Поэтому в окончательной формуле нельзя полагать v=0, так как приведённое решение справедливо только при выполнении условия h/b<

Сдвиг частоты, обусловленный явлением отдачи, легко найти с помощью законов сохранения энергии и импульса. Запишем уравнения (1) и (2) для случая p=0:

h'

h

=-

p^2

2m

,

0

=

p

h'

c

.

Подставляя

импульс отдачи p из второго равенства в первое, находим

'

=-

h'

2mc^2

.

(7)

Таким образом, относительный сдвиг частоты из-за явления отдачи определяется отношением энергии фотона к энергии покоя излучающего атома. Для гамма-квантов, излучаемых атомными ядрами, такой сдвиг оказывается существенным. В оптическом диапазоне /<<1 и формулу (7) можно переписать в виде

=-

h

2mc^2

.

Например, для линий серии Бальмера в спектре атома водорода /~10– 9.

Разумеется, явление отдачи можно учесть и при излучении света движущимся атомом. Для этого при переходе от формулы (2) к (3) нужно сохранить слагаемое, содержащее квадрат импульса фотона. Окончательное выражение для относительного сдвига частоты, кроме (v/c)cos , будет содержать член h'/(2mc^2), который становится главным при v=0.

До сих пор мы рассматривали нерелятивистский случай, когда излучающий атом двигался со скоростью v, много меньшей скорости света c. Интересно выяснить, каким будет обусловленный эффектом Доплера сдвиг частоты, если излучатель движется с большой скоростью, сравнимой со скоростью света c. Это можно сделать, если использовать для энергии и импульса излучающего атома точные релятивистские выражения. Однако проще рассмотреть другой пример - аннигиляцию электрон-позитронной пары, сопровождающуюся излучением двух гамма-квантов. Анализ этого примера даст возможность ответить и на интересующий нас вопрос.

Пусть перед аннигиляцией относительная скорость электрона и позитрона мала, т.е. можно считать, что они оба покоятся. Так как импульс всей системы до аннигиляции равен нулю, то он останется равным нулю и после излучения. Это значит, что образовавшиеся при аннигиляции фотоны летят в противоположные стороны и имеют равные по модулю импульсы h/c и, следовательно, одинаковую частоту . Эта частота сразу находится с помощью закона сохранения энергии: приравнивая энергию фотона энергии покоя электрона и позитрона,

2h

=

2mc^2

.

получаем

=

mc^2

h

.

(8)

Соответствующая этому излучению длина волны =c/, вследствие (8), равна h/mc и называется комптоновской длиной волны электрона.

Теперь рассмотрим этот же процесс аннигиляции электрона и позитрона с точки зрения другой системы отсчёта, относительно которой электрон-позитронная пара перед аннигиляцией движется со скоростью v. Направление скорости v выберем так, чтобы оно совпадало с направлением распространения одного из испущенных фотонов. Обозначим через частоту фотона, излучаемого «вперёд», а через - излучаемого «назад». Тогда в этой системе отсчёта закон сохранения импульса в проекции на направление движения аннигилирующей пары принимает вид

h

c

h

c

=

2mv

1-v^2/c^2

.

(9)

При аннигиляции полная релятивистская энергия пары превращается в энергию излучения. Поэтому закон сохранения энергии записывается в виде

h

+

h

=

2mc^2

1-v^2/c^2

(10)

Из системы уравнений (9) и (10) легко найти частоты и . Умножив обе части (9) на с и сложив с уравнением (10), находим :

Поделиться:
Популярные книги

Барон нарушает правила

Ренгач Евгений
3. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон нарушает правила

Помещица Бедная Лиза

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Помещица Бедная Лиза

Бальмануг. Студентка

Лашина Полина
2. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бальмануг. Студентка

Изменить нельзя простить

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Изменить нельзя простить

Газлайтер. Том 3

Володин Григорий
3. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 3

Жандарм 4

Семин Никита
4. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 4

Кодекс Охотника. Книга X

Винокуров Юрий
10. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга X

Отмороженный 6.0

Гарцевич Евгений Александрович
6. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 6.0

Пипец Котенку!

Майерс Александр
1. РОС: Пипец Котенку!
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Пипец Котенку!

АН (цикл 11 книг)

Тарс Элиан
Аномальный наследник
Фантастика:
фэнтези
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
АН (цикл 11 книг)

Толян и его команда

Иванов Дмитрий
6. Девяностые
Фантастика:
попаданцы
альтернативная история
7.17
рейтинг книги
Толян и его команда

Пятое правило дворянина

Герда Александр
5. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пятое правило дворянина

Игрок, забравшийся на вершину. Том 8

Михалек Дмитрий Владимирович
8. Игрок, забравшийся на вершину
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Игрок, забравшийся на вершину. Том 8

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7