Чтение онлайн

на главную - закладки

Жанры

Камень, ножницы, теорема. Фон Нейман. Теория игр
Шрифт:

Все свои открытия в области логики, описывающей явления квантовой механики, Нейман изложил во втором издании «Математических оснований квантовой механики», опубликованном в 1936 году.

КРУШЕНИЕ ОСНОВ

Описанная выше логическая система предполагает некую механичность — в том смысле, что все операции с высказываниями следуют определенным правилам. Проще говоря, хоть это и не совсем правильно, важно следить за тем, что ты делаешь, но можно не думать о том, что ты делаешь. Можно создавать геометрические теоремы исключительно по правилам логики, не думая ни о прямых и плоскостях, ни о том, как они пересекаются и расходятся в пространстве. Мы могли бы «включить тумблер» и автоматически создать все возможные геометрические теоремы. Это сделало бы математику не только точной, но и совершенной наукой — наукой наук.

На протяжении 2000 лет аксиоматический

метод в геометрии давал довольно хорошие результаты. Полагалось, что этот же метод можно применить и к другим областям науки. В конце XIX века арифметика уже обладала собственной системой аксиом, из которых можно было бы вывести целый ряд предложений, возводимых в ранг теорем. Этим и занимался Давид Гильберт, когда Гёдель сформулировал свою теорему, значительно ускорившую весь процесс.

В 1930 году Гёдель защитил докторскую диссертацию, написанную под руководством Ханса Хана (1879-1934). Она называлась «Полнота аксиом логического функционального исчисления» и была посвящена теме, тесно связанной с формалистской программой Гильберта. В начале сентября того же года Гёдель принял участие в конгрессе «Эпистемология точных наук», на котором также выступали Рудольф Карнап, Аренд Гейтинг, Джон фон Нейман и Фридрих Вайсман. Гёдель четко заявил о своих сомнениях в выполнимости программы Гильберта и изложил некоторые свои результаты, демонстрирующие неполноту арифметики. Немногим позже, в 1931 году, когда ему было всего 25 лет, Гёдель опубликовал знаменитую теорему о неполноте, которая подрывала сами основы математики. Несмотря на то что в теореме говорилось о сугубо специализированных вещах, она очень быстро получила широкий международный резонанс. Благодаря этому в 1933 году ученый получил звание приват-доцента Венского университета.

ТЕОРЕМЫ ГЁДЕЛЯ

Теория состоит из совокупности аксиом и правил логического вывода, которые позволяют установить ряд теорем исходя из этих аксиом. Теория считается противоречивой, когда в ее рамках можно доказать и некое утверждение, и противоположное ему. Если теория не противоречива, то говорят, что она последовательна. С другой стороны, в рамках теории должна быть возможность доказать любое утверждение, если оно истинное. В этом случае теория считается полной.

Первая теорема Гёделя гласит, что в любой системе аксиом, к которой можно отнести арифметику целых чисел, существуют верные предложения, которые невозможно доказать в рамках этой системы. То есть если арифметическая теория непротиворечива, то она неполная. Это равноценно утверждению, что совершенной системы аксиом, включающей арифметику натуральных чисел, не существует, так как она либо противоречивая, либо неполная.

Фон Нейман, принимавший участие в знаменитом конгрессе в Кёнигсберге, сразу же заинтересовался идеями Гёделя. Сам фон Нейман установил систему аксиом для теории множеств и считал, что тема закрыта. Но ученому пришлось признать, что его система была неполной: не потому, что в ней были недостатки, а потому что любая такая система является неполной по определению. Фон Нейман не только согласился с этим, но и за рекордно короткий срок, всего за месяц, подготовил для Гёделя следствие его теоремы, которое стало известно как вторая теорема Гёделя. Согласно ей если арифметическая теория непротиворечива, то в ее рамках нет ни одного доказательства, что она таковой является. Эта вторая теорема немного запутанная, и из нее следует, что если теория вмещает в себя арифметику натуральных чисел, она не может подтвердить сама себя, то есть утверждать «теория Т непротиворечива». Для этой теории было разработано несколько символов; чтобы выразить утверждение «теория Т непротиворечива», можно записать, например, С(Т). Согласно второй теореме Гёделя, если Т непротиворечива, то С(Т) нельзя доказать на основе Т.

КУРТ ГЁДЕЛЬ

Австрийско-американский математик, логик и философ Курт Гёдель (1906- 1978) был младшим из двух сыновей Рудольфа и Марианны Гёделей, немецких иммигрантов, работавших в текстильной промышленности. После окончания учебы в Королевской гимназии Брно Курт в 1924 году уехал учиться в Венский университет. Он поступал туда с четкой целью изучать физику, но под влиянием преподавателей Филиппа Фуртвенглера и Ханса Хана занялся математикой. Уже в то время Гёдель страдал ревматической лихорадкой, и эта болезнь наложила свой отпечаток на характер ученого: он испытывал маниакальное волнение за свое здоровье и главным образом за все, что касалось питания. В 1920-е годы, несмотря на глубокий экономический кризис, Венский университет был культурным и научным центром страны. В 1926 году Гёдель был приглашен на философский семинар в кружок Морица Шлика (1882-1936), который посещали такие физики и математики, как Рудольф Карнап (1891-1970), Ханс Хан (1879-1934), Фридрих Вайсман (1896-1959) и Отто Нейрат (1882-1945). Они впоследствии

и составили знаменитый Венский кружок. Философ Карнап и математик Карл Менгер ввели Гёделя в математическую логику. В то время кружок пристально следил за работами Людвига Витгенштейна (1889-1951) о языке для описания языка (метаязыке), и этот подход Гёдель хотел применить к математике. Но ученый не полностью разделял научные воззрения в духе логического позитивизма, царившие в кружке. Он придерживался скорее обратной позиции — чистого платонизма. Гёдель считал, что истина существует независимо оттого, известна она нам или нет. В математике это означало, что теоремы не создаются, а открываются. Гёдель неоднократно подчеркивал, что к своим результатам он пришел, будучи вдохновленным этой платоновской метафизикой. В 1952 году Гарвардский университет наградил Гёделя степенью почетного доктора наук и назвал его «первооткрывателем самых важных математических истин этого столетия».

Курт Гёдель в период работы в Институте перспективных исследований в Принстоне (Нью- Джерси, США) в 1940-е годы.

Именно вторая теорема, которой сам Гёдель не придал большого значения и считал следствием первой, оказала наибольшее влияние на математическое научное сообщество. Ее всегда называли второй теоремой Іеделя, никогда не упоминая вклад фон Неймана.

Сегодня теории Гёделя обобщены и перенесены в самые разные области. Они применяются в информатике, особенно в случае невозможности решить проблему остановки. Эта проблема заключается в том, чтобы найти способ определить, может какой-либо компьютер с произвольным набором установленных программ остановиться после выполнения алгоритма или он зависнет. Еще одно следствие теоремы Гёделя для информатики относится к вирусам, так как доказывает, что «ни одна программа, которая не меняет операционную систему компьютера, не сможет определить все программы, которые ее меняют».

Гильберт довольно пессимистически отнесся к следствиям из теоремы Гёделя, так как очень надеялся на возможность установить такие основания математики, которые запустят самосозидательный процесс, и при помощи него, исходя из простых предложений, сформулированных в непротиворечивой логической системе, можно будет вывести сложные результаты. Гёдель не разделял этого пессимизма, так как не считал, что его теорема неполноты подразумевает ошибочность аксиоматического метода для развития теории математики. По его мнению, это был этап эволюции, на котором главную роль вновь начинала играть научная интуиция, как это и должно быть. Такой взгляд полностью соответствовал философии Гёделя, более близкой к платонизму, чем к логическому позитивизму «Разрушающее» значение его теорем заключалось в том, что механический, точный аспект математики уходил на второй план, выдвигая на первый воображение и интуицию, возвращая математике место духовных наук, которое принадлежало ей по праву, как музыке и философии.

ВЫВОДЫ

Программа Гильберта потерпела неудачу, но фон Нейман не разделял его пессимизма по поводу будущего математики. С практической точки зрения он считал аксиоматизацию множеств, освободившую математику от странных элементов, и последующую аксиоматизацию квантовой механики вполне успешными. Фон Нейман никогда не отказывался от идеи создания логических моделей и стремился как можно больше абстрагировать задачи даже в областях, далеких от математики, что он впоследствии применил в теории игр. Так что, хотя план и провалился, хотя аксиоматизация и не позволяла уничтожить все противоречия и странности, она, тем не менее, помогала их выявить и в какой-то мере контролировать.

Математика всегда давала свои плоды, и фон Нейман не видел причин для изменения ситуации. Несмотря на то что внутренняя правильность логической системы математики была поставлена под вопрос, в истории этой науки начиная с ее появления существовало великое множество доказательств ее эффективности. Фон Нейман утверждал, что в классической математике совершались полезные и одновременно изящные открытия, а ее основания были такими же твердыми и точными, как, например, существование электрона. Уж если, по его мнению, можно было принять правомочность такой науки, как физика, то не стоило сомневаться и в классической математике.

ГЛАВА З

Теория игр

Фон Нейман создал условия для возникновения новой математической теории, известной сегодня как теория игр. С этого момента игры перестали быть развлечением и превратились в сценарий, в котором двое или более человек могли развивать рациональные стратегии, чтобы повлиять на результат партии. Сценарии могли быть абсолютно разными, и для их реализации был необходим такой сложный и фундаментальный аспект, как принятие решений.

Поделиться:
Популярные книги

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

Безымянный раб

Зыков Виталий Валерьевич
1. Дорога домой
Фантастика:
фэнтези
9.31
рейтинг книги
Безымянный раб

Действуй, дядя Доктор!

Юнина Наталья
Любовные романы:
короткие любовные романы
6.83
рейтинг книги
Действуй, дядя Доктор!

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Невеста вне отбора

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
7.33
рейтинг книги
Невеста вне отбора

Темный Патриарх Светлого Рода 3

Лисицин Евгений
3. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 3

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Воин

Бубела Олег Николаевич
2. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.25
рейтинг книги
Воин

Барон не играет по правилам

Ренгач Евгений
1. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон не играет по правилам

Провинциал. Книга 4

Лопарев Игорь Викторович
4. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 4

Возвращение Безумного Бога 4

Тесленок Кирилл Геннадьевич
4. Возвращение Безумного Бога
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Возвращение Безумного Бога 4

Измена. Мой заклятый дракон

Марлин Юлия
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Измена. Мой заклятый дракон