Чтение онлайн

на главную

Жанры

Курс теоретической астрофизики
Шрифт:

Кроме звёзд типа P Лебедя, эмиссионными линиями обладают также другие звёзды спектрального класса B. Их называют просто звёздами типа Be. Профили линий в спектрах звёзд типа Be могут быть охарактеризованы следующим образом: на широкую и неглубокую линию поглощения накладывается менее широкая эмиссионная линия, которая в одних случаях бывает одиночной, в других — раздвоённой (рис. 35, б и в). Спектры звёзд типа Be претерпевают заметные изменения с течением времени. Например, меняются относительные интенсивности компонент ярких линий. Иногда яркие линии исчезают совершенно и звезда типа Be превращается в нормальную звезду класса B. Вместе с изменениями спектра наблюдаются также

небольшие колебания блеска звезды.

Объяснение эмиссионных спектров рассматриваемых звёзд основывается на предположении об истечении вещества из звезды, приводящем к образованию вокруг неё протяжённой движущейся оболочки. Так как коэффициент дилюции излучения в оболочке мал, то, опираясь на теорему Росселанда (см. § 22), мы можем утверждать, что оболочка должна поглощать идущие от звезды кванты больших частот и перерабатывать их в кванты меньших частот. Иными словами, свечение оболочки происходит в принципе так же, как свечение газовой туманности, т.е. за счёт ультрафиолетовой энергии звезды. Очевидно, что для появления ярких линий в спектре звезды необходимо, чтобы её температура была достаточно высокой (как показывают простые подсчёты, приблизительно больше 20 000 K). Поэтому яркие линии, возникающие за счёт ультрафиолетовой энергии звезды, и наблюдаются только в спектрах самых горячих звёзд (классов O и B).

По профилям ярких линий в спектрах звёзд можно судить о характере выбрасывания вещества из звезды. Обычно принимается, что из звёзд типа WR происходит непрерывное истечение вещества с приблизительно постоянной интенсивностью во все стороны. Такое движение вещества должно приводить к наблюдаемым профилям линий, симметричным относительно центральной частоты. При этом удаляющееся от нас вещество даёт часть линии, расширенную в красную сторону спектра, а приближающееся — в фиолетовую. Так как спектры звёзд типа WR не претерпевают заметных изменений с течением времени, то надо считать, что истечение вещества из них является стационарным.

Более сложно объяснение профилей линий в спектрах звёзд типа Be. Согласно Струве эти звёзды очень быстро вращаются, вследствие чего и наблюдаются широкие линии поглощения в их спектрах. Судя по ширине линий, скорости вращения звёзд на экваторе доходят до нескольких сотен километров в секунду. Струве считал, что благодаря вращению происходит истечение вещества из экваториальной плоскости звезды, приводящее к образованию газового кольца, вращающегося вокруг звезды. В газовом кольце и возникают яркие линии, накладывающиеся на широкие линии поглощения. Так как скорость вращения кольца меньше скорости вращения звезды (вследствие сохранения углового момента), то яркая линия оказывается уже линии поглощения. По-видимому, в действительности быстрое вращение звёзд типа Be способствует истечению из них вещества, но не является причиной истечения. Это следует из того, что эмиссионный спектр звёзд типа Be испытывает иррегулярные изменения с течением времени (а иногда и исчезает вовсе). Поэтому и истечение вещества из рассматриваемых звёзд должно носить иррегулярный характер.

Для истолкования спектров звёзд типов WR, P Лебедя и Be (и других нестационарных звёзд) нужна теория возникновения спектральных линий в протяжённых движущихся оболочках звёзд. Основы теории будут изложены ниже (подробнее см. [1] и [2]).

2. Профили эмиссионных линий.

Скорости движения оболочек обычно составляют десятки и сотни километров в секунду, т.е. они гораздо больше средних термических скоростей атомов. Поэтому можно считать, что профили эмиссионных линий определяются в основном движением оболочки. Влиянием других факторов на профиль линии в первом приближении можно пренебречь.

Мы сейчас получим формулу, определяющую профиль эмиссионной линии при произвольном поле скоростей в оболочке. Примем также во внимание возможную непрозрачность оболочки для излучения в линии.

Будем рассматривать линию, возникающую при переходе из k-го состояния в i-е данного

атома. Коэффициент поглощения ik и коэффициент излучения ik будем считать постоянными в интервале

ik

ik

2

<

<

ik

+

ik

2

и равными нулю вне этого интервала. Здесь ik — центральная частота линии,

ik

=

2

u

c

ik

,

где u — средняя тепловая скорость атома, c — скорость света.

Возьмём координатную систему xyz с началом координат в центре звезды и осью z, направленной к наблюдателю. Обозначим скорость движения атомов в оболочке через v(x,y,z) а её проекцию на ось z через vz(x,y,z) Будем считать, что v>>u.

Очевидно, что при сделанных предположениях относительно ik и ik излучение частоты будет посылаться к наблюдателю не всей оболочкой, а только её некоторой областью, расположенной по обе стороны от поверхности равных лучевых скоростей, определённой уравнением

=

ik

+

ik

c

v

z

(x,y,z)

.

(28.1)

Границы упомянутой области находятся от поверхности (28.1) по лучу зрения (т.е. по оси z) на расстоянии, соответствующем изменению частоты на величину ik/2. Обозначая граничные значения z через z и z и пользуясь малостью u по сравнению с v, получаем

ik

=

ik

c

vz

z

(z-z)

,

(28.2)

или

z-z

=

2u

|v/z|

.

(28.3)

Пусть Iik(x,y,) — интенсивность излучения, идущего от точки диска звезды с координатами x,y в частоте внутри линии. Так как «толщина» слоя, дающего излучение в частоте (т.е. разность z-z), сравнительно невелика (за исключением отдельных мест), то величины ik и ik можно считать постоянными в этом слое вдоль оси z и равными их значениям на поверхности (28.1). Поэтому для интенсивности Iik(x,y,) имеем

I

ik

(x,y,)

=

ik

ik

1

exp

ik

(z-z)

.

(28.4)

Полная энергия, излучаемая оболочкой в частоте в единице телесного угла, даётся формулой

E

ik

=

I

ik

(x,y,)

dx

dy

.

(28.5)

Поделиться:
Популярные книги

Кодекс Охотника. Книга XVII

Винокуров Юрий
17. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVII

Отмороженный 6.0

Гарцевич Евгений Александрович
6. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 6.0

Сломанная кукла

Рам Янка
5. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сломанная кукла

Последний попаданец 2

Зубов Константин
2. Последний попаданец
Фантастика:
юмористическая фантастика
попаданцы
рпг
7.50
рейтинг книги
Последний попаданец 2

Идущий в тени 4

Амврелий Марк
4. Идущий в тени
Фантастика:
боевая фантастика
6.58
рейтинг книги
Идущий в тени 4

Царь Федор. Трилогия

Злотников Роман Валерьевич
Царь Федор
Фантастика:
альтернативная история
8.68
рейтинг книги
Царь Федор. Трилогия

Не кровный Брат

Безрукова Елена
Любовные романы:
эро литература
6.83
рейтинг книги
Не кровный Брат

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

Темный Патриарх Светлого Рода 4

Лисицин Евгений
4. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 4

Инцел на службе демоницы 1 и 2: Секса будет много

Блум М.
Инцел на службе демоницы
Фантастика:
фэнтези
5.25
рейтинг книги
Инцел на службе демоницы 1 и 2: Секса будет много

Попала, или Кто кого

Юнина Наталья
Любовные романы:
современные любовные романы
5.88
рейтинг книги
Попала, или Кто кого

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Провинциал. Книга 7

Лопарев Игорь Викторович
7. Провинциал
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Провинциал. Книга 7