Чтение онлайн

на главную

Жанры

Курс теоретической астрофизики
Шрифт:

B

=

B

(T)

(1+

+…)

,

(6.5)

в котором берут только два первых члена. Мы имеем

=

1

B(T)

dB

dT

dT

d

=0

(6.6)

или,

на основании формул (4.2) и (5.26),

=

3

8

h

kT

1

1-e– h/(kT)

.

(6.7)

Для величины I(0,) приближённо получаем

I

(0,)

=

B

(T)

x

x

0

(1+

)

exp

sec

sec

d

,

(6.8)

или, после интегрирования,

I

(0,)

=

B

(T)

1

+

cos

.

(6.9)

Подставляя (6.9) в (4.35), для потока излучения находим

H

=

B

(T)

1

+

2

3

.

(6.10)

Формулы (6.9) и (6.10) являются довольно грубыми, однако из них ясно видно, как отношение / влияет на величины I(0,) и H. Легко понять, что это влияние объясняется ростом температуры с глубиной. Чем меньше отношение /, тем из более глубоких слоёв фотосферы до нас доходит излучение и тем, следовательно, величины I(0,) и H оказываются больше.

Как известно, величиной I(0,) даётся распределение яркости по диску звезды. Из формулы (6.9) следует, что в частотах, для которых коэффициент поглощения очень велик, яркость диска везде приблизительно одинакова; в частотах же, для которых коэффициент поглощения очень мал, яркость сильно убывает при переходе от центра к краю. Рассмотрим для примера звёзды, в фотосферах которых поглощение вызывается в основном атомами водорода (т.е. звёзды классов A и B, как увидим дальше). Из формулы (5.11) видно, что коэффициент поглощения сразу за

пределом серии Бальмера в несколько раз больше, чем до предела (так как за пределом i=2, а до предела i=3). Поэтому распределение яркости по диску звезды в частотах после бальмеровского предела должно заметно отличаться от распределения яркости по диску в частотах до бальмеровского предела. Этот вывод может быть сопоставлен с результатами наблюдений затменных переменных звёзд классов A и B.

Величина H характеризует относительное распределение энергии в непрерывном спектре звезды. Важной особенностью спектров звёзд некоторых классов являются скачки интенсивности у пределов серий, вызванные скачками коэффициента поглощения. В частности, в спектрах звёзд классов A и B должны быть скачки у предела серии Бальмера (интенсивность до предела больше интенсивности после предела). Приближённо бальмеровский скачок может быть найден по формуле (6.10). Более точные данные о бальмеровских скачках в звёздных спектрах будут приведены ниже.

Пользуясь формулой (6.10) и наблюдательными данными о распределении энергии в непрерывном спектре звезды, можно приближённо определить зависимость коэффициента поглощения от частоты в фотосфере (точнее говоря, величину /). Такое определение было сделано для Солнца, когда ещё не был решён вопрос о том, какими атомами вызывается в основном поглощение в фотосфере Солнца. Это исследование сильно способствовало решению указанного вопроса.

2. Случай поглощения атомами одного рода.

Изложенная выше приближённая теория даёт результаты, которые могут быть использованы лишь для грубых оценок. Переходя теперь к более строгой теории фотосфер, мы сначала рассмотрим один частный случай, в котором эта теория сравнительно проста. Именно, допустим, что поглощение в фотосфере вызывается в основном атомами одного рода, т.е. атомами одного элемента в определённой стадии ионизации. В этом случае объёмный коэффициент поглощения может быть представлен в виде произведения двух функций, одна из которых зависит только от частоты и температуры, а другая — только от температуры и плотности, т.е.

=

(,T)

(T,)

.

(6.11)

Возможность такого представления видна, например, из формулы (5.11), определяющей коэффициент поглощения для водорода.

Если даётся формулой (6.11), то уравнение переноса излучения может быть записано так:

cos

dI

d

=

(,T)

[I

– B

(T)]

,

(6.12)

где B(T) — интенсивность излучения абсолютно чёрного тела при температуре T и

=

r

(T,)

dr

.

(6.13)

Уравнение лучистого равновесия (1.17) в данном случае принимает вид

0

(,T)

B

(T)

d

=

0

(,T)

d

I

d

Поделиться:
Популярные книги

Сила рода. Том 3

Вяч Павел
2. Претендент
Фантастика:
фэнтези
боевая фантастика
6.17
рейтинг книги
Сила рода. Том 3

Измена. Истинная генерала драконов

Такер Эйси
1. Измены по-драконьи
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Измена. Истинная генерала драконов

Убивать чтобы жить 7

Бор Жорж
7. УЧЖ
Фантастика:
героическая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 7

Самый лучший пионер

Смолин Павел
1. Самый лучший пионер
Фантастика:
попаданцы
альтернативная история
5.62
рейтинг книги
Самый лучший пионер

Завод 2: назад в СССР

Гуров Валерий Александрович
2. Завод
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Завод 2: назад в СССР

Я тебя не предавал

Бигси Анна
2. Ворон
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я тебя не предавал

Весь цикл «Десантник на престоле». Шесть книг

Ланцов Михаил Алексеевич
Десантник на престоле
Фантастика:
альтернативная история
8.38
рейтинг книги
Весь цикл «Десантник на престоле». Шесть книг

Газлайтер. Том 17

Володин Григорий Григорьевич
17. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 17

Курсант: назад в СССР 2

Дамиров Рафаэль
2. Курсант
Фантастика:
попаданцы
альтернативная история
6.33
рейтинг книги
Курсант: назад в СССР 2

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Газлайтер. Том 1

Володин Григорий
1. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 1

Белые погоны

Лисина Александра
3. Гибрид
Фантастика:
фэнтези
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Белые погоны

Кротовский, сколько можно?

Парсиев Дмитрий
5. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, сколько можно?

Мимик нового Мира 6

Северный Лис
5. Мимик!
Фантастика:
юмористическая фантастика
попаданцы
рпг
5.00
рейтинг книги
Мимик нового Мира 6